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Wojciech H. Zurek

This paper has a somewhat unusual origin and, as a consequence, an unusual
structure. It is built on the principle embraced by families who outgrow their
dwellings and decide to add a few rooms to their existing structures instead of start-
ing from scratch. These additions usually “show,” but the whole can still be quite
pleasing to the eye, combining the old and the new in a functional way. 

What follows is such a “remodeling” of the paper I wrote a dozen years ago for
Physics Today (1991). The old text (with some modifications) is interwoven with the
new text, but the additions are set off in boxes throughout this article and serve as a
commentary on new developments as they relate to the original. The references
appear together at the end. 

In 1991, the study of decoherence was still a rather new subject, but already at
that time, I had developed a feeling that most implications about the system’s
“immersion” in the environment had been discovered in the preceding 10 years, so a
review was in order. While writing it, I had, however, come to suspect that the small
gaps in the landscape of the border territory between the quantum and the classical
were actually not that small after all and that they presented excellent opportunities
for further advances. 

Indeed, I am surprised and gratified by how much the field has evolved over the
last decade. The role of decoherence was recognized by a wide spectrum of practic-
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ing physicists as well as, beyond physics proper, by material scientists and
philosophers. The study of the predictability sieve, investigations of the interface
between chaotic dynamics and decoherence, and most recently, the tantalizing
glimpses of the information-theoretic nature of the quantum have elucidated our
understanding of the Universe. During this period, Los Alamos has grown into a
leading center for the study of decoherence and related issues through the enthusi-
astic participation of a superb group of staff members, postdoctoral fellows, long-
term visitors, and students, many of whom have become long-term collaborators.
This group includes, in chronological order, Andy Albrecht, Juan Pablo Paz,
Bill Wootters, Raymond Laflamme, Salman Habib, Jim Anglin, Chris Jarzynski,
Kosuke Shizume, Ben Schumacher, Manny Knill, Jacek Dziarmaga, Diego Dalvit,
Zbig Karkuszewski, Harold Ollivier, Roberto Onofrio, Robin
Blume-Kohut, David Poulin, Lorenza Viola, and David Wallace.

Finally, I have some advice for the reader. I believe this paper
should be read twice: first, just the old text alone; then—and
only then—on the second reading, the whole thing. I would also
recommend to the curious reader two other overviews: the draft
of my Reviews of Modern Physics paper (Zurek 2001a) and Les
Houches Lectures coauthored with Paz (Paz and Zurek 2001).



Introduction

Quantum mechanics works exceedingly well in all practical applications. No example
of conflict between its predictions and experiment is known. Without quantum physics,
we could not explain the behavior of the solids, the structure and function of DNA,
the color of the stars, the action of lasers, or the properties of superfluids. Yet nearly 
a century after its inception, the debate about the relation of quantum physics to the
familiar physical world continues. Why is a theory that seems to account with precision
for everything we can measure still deemed lacking? 

The only “failure” of quantum theory is its inability to provide a natural framework
for our prejudices about the workings of the Universe. States of quantum systems evolve
according to the deterministic, linear Schrödinger equation

(1)

That is, just as in classical mechanics, given the initial state of the system and its
Hamiltonian H, one can, at least in principle, compute the state at an arbitrary time. 
This deterministic evolution of |ψ〉 has been verified in carefully controlled experiments.
Moreover, there is no indication of a border between quantum and classical at which
Equation (1) would fail (see cartoon on the opener to this article). 

There is, however, a very poorly controlled experiment with results so tangible and
immediate that it has enormous power to convince: Our perceptions are often difficult to
reconcile with the predictions of Equation (1). Why? Given almost any initial condition,
the Universe described by |ψ〉 evolves into a state containing many alternatives that are
never seen to coexist in our world. Moreover, while the ultimate evidence for the choice
of one alternative resides in our elusive “consciousness,” there is every indication that 
the choice occurs much before consciousness ever gets involved and that, once made, the
choice is irrevocable. Thus, at the root of our unease with quantum theory is the clash
between the principle of superposition—the basic tenet of the theory reflected in the 
linearity of Equation (1)—and everyday classical reality in which this principle appears
to be violated. 

The problem of measurement has a long and fascinating history. The first widely
accepted explanation of how a single outcome emerges from the multitude of potentiali-
ties was the Copenhagen Interpretation proposed by Niels Bohr (1928), who insisted
that a classical apparatus is necessary to carry out measurements. Thus, quantum theory
was not to be universal. The key feature of the Copenhagen Interpretation is the dividing
line between quantum and classical. Bohr emphasized that the border must be mobile so
that even the “ultimate apparatus”—the human nervous system—could in principle be
measured and analyzed as a quantum object, provided that a suitable classical device
could be found to carry out the task. 

In the absence of a crisp criterion to distinguish between quantum and classical,
an identification of the classical with the macroscopic has often been tentatively accepted.
The inadequacy of this approach has become apparent as a result of relatively recent
developments: A cryogenic version of the Weber bar—a gravity-wave detector— must 
be treated as a quantum harmonic oscillator even though it may weigh a ton (Braginsky
et al. 1980, Caves et al. 1980). Nonclassical squeezed states can describe oscillations of
suitably prepared electromagnetic fields with macroscopic numbers of photons (Teich
and Saleh 1990). Finally, quantum states associated with the currents of superconducting
Josephson junctions involve macroscopic numbers of electrons, but still they can tunnel
between the minima of the effective potential corresponding to the opposite sense of 
rotation (Leggett et al. 1987, Caldeira and Leggett 1983a, Tesche 1986).
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If macroscopic systems cannot be always safely placed on the classical side of the
boundary, then might there be no boundary at all? The Many Worlds Interpretation (or
more accurately, the Many Universes Interpretation), developed by Hugh Everett III with
encouragement from John Archibald Wheeler in the 1950s, claims to do away with the
boundary (Everett 1957, Wheeler 1957). In this interpretation, the entire universe is
described by quantum theory. Superpositions evolve forever according to the Schrödinger
equation. Each time a suitable interaction takes place between any two quantum systems,
the wave function of the universe splits, developing ever more “branches.”

Initially, Everett’s work went almost unnoticed. It was taken out of mothballs over a
decade later by Bryce DeWitt (1970) and DeWitt and Neill Graham (1973), who man-
aged to upgrade its status from “virtually unknown” to “very controversial.” The Many
Worlds Interpretation is a natural choice for quantum cosmology, which describes the
whole Universe by means of a state vector. There is nothing more macroscopic than the
Universe. It can have no a priori classical subsystems. There can be no observer “on the
outside.” In this universal setting, classicality must be an emergent property of the
selected observables or systems. 

At first glance, the Many Worlds and Copenhagen Interpretations have little in 
common. The Copenhagen Interpretation demands an a priori “classical domain” with a
border that enforces a classical “embargo” by letting through just one potential outcome.
The Many Worlds Interpretation aims to abolish the need for the border altogether.
Every potential outcome is accommodated by the ever-proliferating branches of the
wave function of the Universe. The similarity between the difficulties faced by these two
viewpoints becomes apparent, nevertheless, when we ask the obvious question, “Why do
I, the observer, perceive only one of the outcomes?” Quantum theory, with its freedom
to rotate bases in Hilbert space, does not even clearly define which states of the
Universe correspond to the “branches.” Yet, our perception of a reality with alterna-
tives—not a coherent superposition of alternatives—demands an explanation of when,
where, and how it is decided what the observer actually records. Considered in this 
context, the Many Worlds Interpretation in its original version does not really abolish
the border but pushes it all the way to the boundary between the physical Universe and 
consciousness. Needless to say, this is a very uncomfortable place to do physics. 

In spite of the profound nature of the difficulties, recent years have seen a growing con-
sensus that progress is being made in dealing with the measurement problem, which is the
usual euphemism for the collection of interpretational conundrums described above. The
key (and uncontroversial) fact has been known almost since the inception of quantum the-
ory, but its significance for the transition from quantum to classical is being recognized only
now: Macroscopic systems are never isolated from their environments. Therefore—as H.
Dieter Zeh emphasized (1970)—they should not be expected to follow Schrödinger’s equa-
tion, which is applicable only to a closed system. As a result, systems usually regarded as
classical suffer (or benefit) from the natural loss of quantum coherence, which “leaks out”
into the environment (Zurek 1981, 1982). The resulting “decoherence” cannot be ignored
when one addresses the problem of the reduction of the quantum mechanical wave packet:
Decoherence imposes, in effect, the required “embargo” on the potential outcomes by
allowing the observer to maintain only the records of alternatives sanctioned by decoher-
ence and to be aware of only one of the branches—one of the “decoherent histories” in the
nomenclature of Murray Gell-Mann and James Hartle (1990) and Hartle (1991). 

The aim of this paper is to explain the physics and thinking behind this approach.
The reader should be warned that this writer is not a disinterested witness to this 
development (Wigner 1983, Joos and Zeh 1985, Haake and Walls 1986, Milburn and
Holmes 1986, Albrecht 1991, Hu et al. 1992), but rather, one of the proponents. I shall,
nevertheless, attempt to paint a fairly honest picture and point out the difficulties 
as well as the accomplishments.
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Correlations and Measurements

A convenient starting point for the discussion of the measurement problem and, more
generally, of the emergence of classical behavior from quantum dynamics is the analysis
of quantum measurements due to John von Neumann (1932). In contrast to Bohr, who
assumed at the outset that the apparatus must be classical (thereby forfeiting the claim
of quantum theory to universal validity), von Neumann analyzed the case of a quantum
apparatus. I shall reproduce his analysis for the simplest case: a measurement on a two-
state system S (which can be thought of as an atom with spin 1/2) in which a quantum
two-state (one bit) detector records the result.

The Hilbert space H
S

of the system is spanned by the orthonormal states |↑〉 and |↓〉,
while the states |d↑〉 and |d↓〉 span the H

D
of the detector. A two-dimensional H

D
is the

absolute minimum needed to record the possible outcomes. One can devise a quantum
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Much of what was written in the introduction
remains valid today. One important development is
the increase in experimental evidence for the validity
of the quantum principle of superposition in various
contexts including spectacular double-slit experi-
ments that demonstrate interference of fullerenes
(Arndt et al. 1999), the study of superpositions in
Josephson junctions (Mooij et al.1999, Friedman et
al. 2000), and the implementation of Schrödinger
“kittens” in atom interferometry (Chapman et al.
1995, Pfau et al. 1994), ion traps (Monroe et al.
1996) and microwave cavities (Brune et al. 1996).
In addition to confirming the superposition principle

and other exotic aspects of quantum theory (such as
entanglement) in novel settings, these experiments
allow—as we shall see later—for a controlled 
investigation of decoherence. 

The other important change that influenced the per-
ception of the quantum-to-classical “border territory”
is the explosion of interest in quantum information
and computation. Although quantum computers were
already being discussed in the 1980s, the nature of the
interest has changed since Peter Shor invented his 
factoring algorithm. Impressive theoretical advances,
including the discovery of quantum error correction
and resilient quantum computation, quickly followed,
accompanied by increasingly bold experimental for-
ays. The superposition principle, once the cause of
trouble for the interpretation of quantum theory, has
become the central article of faith in the emerging 

science of quantum information processing. This last
development is discussed elsewhere in this issue, so 
I shall not dwell on it here. 

The application of quantum physics to information
processing has also transformed the nature of interest
in the process of decoherence: At the time of my orig-
inal review (1991), decoherence was a solution to the
interpretation problem—a mechanism to impose an
effective classicality on de facto quantum systems. In
quantum information processing, decoherence plays
two roles. Above all, it is a threat to the quantumness
of quantum information. It invalidates the quantum
superposition principle and thus turns quantum com-
puters into (at best) classical computers, negating the
potential power offered by the quantumness of the
algorithms. But decoherence is also a necessary
(although often taken for granted) ingredient in quan-
tum information processing, which must, after all, end
in a “measurement.”

The role of a measurement is to convert quantum
states and quantum correlations (with their 
characteristic indefiniteness and malleability) into
classical, definite outcomes. Decoherence leads to 
the environment-induced superselection (einselection)
that justifies the existence of the preferred pointer
states. It enables one to draw an effective border
between the quantum and the classical in straightfor-
ward terms, which do not appeal to the “collapse of
the wave packet” or any other such deus ex machina.

Decoherence in Quantum Information Processing



detector (see Figure 1) that “clicks” only when the spin is in the state |↑〉, that is,

|↑〉 |d↓〉 → |↑〉 |d↑〉 , (2)

and remains unperturbed otherwise.
I shall assume that, before the interaction, the system was in a pure state |ψ

S
〉 given by

|ψ
S

〉 = α|↑〉 + β|↓〉  , (3)

with the complex coefficients satisfying |α|2 + |β|2 = 1. The composite system starts as

|Φi〉 = |ψ
S

〉|d↓〉  . (4)

Interaction results in the evolution of |Φi〉 into a correlated state |Φc〉:

|Φi〉 = (α|↑〉 + β|↓〉)|d↓〉 ⇒ α|↑〉|d↑〉 + β|↓〉|d↓〉 = |Φc〉  . (5)

This essential and uncontroversial first stage of the measurement process can be accom-
plished by means of a Schrödinger equation with an appropriate interaction. It might be
tempting to halt the discussion of measurements with Equation (5). After all, the corre-
lated state vector |Φc〉 implies that, if the detector is seen in the state |d↑〉, the system is
guaranteed to be found in the state |↑〉. Why ask for anything more? 

The reason for dissatisfaction with |Φc〉 as a description of a completed measurement
is simple and fundamental: In the real world, even when we do not know the outcome of
a measurement, we do know the possible alternatives, and we can safely act as if only
one of those alternatives has occurred. As we shall see in the next section, such an
assumption is not only unsafe but also simply wrong for a system described by |Φc〉. 

How then can an observer (who has not yet consulted the detector) express his 
ignorance about the outcome without giving up his certainty about the “menu” of the
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Figure 1. A Reversible
Stern-Gerlach Apparatus
The “gedanken” reversible
Stern-Gerlach apparatus in (a)
splits a beam of atoms into two
branches that are correlated
with the component of the spin
of the atoms (b) and then
recombines the branches
before the atoms leave the
device. Eugene Wigner (1963)
used this gedanken experiment
to show that a correlation
between the spin and the loca-
tion of an atom can be
reversibly undone. The intro-
duction of a one-bit (two-state)
quantum detector that changes
its state when the atom passes
nearby prevents the reversal:
The detector inherits the corre-
lation between the spin and the
trajectory, so the Stern-Gerlach
apparatus can no longer undo
the correlation. (This illustration 

was adapted with permission from 

Zurek 1981.)



possibilities? Quantum theory provides the right formal tool for the occasion: A density
matrix can be used to describe the probability distribution over the alternative outcomes. 

Von Neumann was well aware of these difficulties. Indeed, he postulated (1932) that,
in addition to the unitary evolution given by Equation (1), there should be an ad hoc
“process 1”—a nonunitary reduction of the state vector—that would take the pure, cor-
related state |Φc〉 into an appropriate mixture: This process makes the outcomes inde-
pendent of one another by taking the pure-state density matrix:

ρc = |Φc〉〈Φc| = |α|2|↑〉〈↑||d↑〉〈d↑| + αβ*|↑〉〈↓||d↑〉〈d↓|

+ α∗β|↓〉〈↑|d↓〉〈d↑| + |β|2|↓〉〈↓||d↓〉〈d↓| , (6)

and canceling the off-diagonal terms that express purely quantum correlations (entangle-
ment) so that the reduced density matrix with only classical correlations emerges:

ρr = |α|2|↑〉〈↑||d↑〉〈d↑| + |β|2|↓〉〈↓||d↓〉〈d↓|  . (7)

Why is the reduced ρr easier to interpret as a description of a completed measurement
than ρc? After all, both ρr and ρc contain identical diagonal elements. Therefore, both
outcomes are still potentially present. So what—if anything—was gained at the substan-
tial price of introducing a nonunitary process 1?

The Question of Preferred Basis: What Was Measured?

The key advantage of ρr over ρc is that its coefficients may be interpreted as classical
probabilities. The density matrix ρr can be used to describe the alternative states of a
composite spin-detector system that has classical correlations. Von Neumann’s 
process 1 serves a similar purpose to Bohr’s “border” even though process 1 leaves all
the alternatives in place. When the off-diagonal terms are absent, one can nevertheless
safely maintain that the apparatus, as well as the system, is each separately in a definite
but unknown state, and that the correlation between them still exists in the preferred
basis defined by the states appearing on the diagonal. By the same token, the identities
of two halves of a split coin placed in two sealed envelopes may be unknown but are
classically correlated. Holding one unopened envelope, we can be sure that the half it
contains is either “heads” or “tails” (and not some superposition of the two) and that the
second envelope contains the matching alternative. 

By contrast, it is impossible to interpret ρc as representing such “classical ignorance.”
In particular, even the set of the alternative outcomes is not decided by ρc! This circum-
stance can be illustrated in a dramatic fashion by choosing α = –β = 1/√2 so that the
density matrix ρc is a projection operator constructed from the correlated state

|Φc〉 = (|↑〉|d↑〉 – |↓〉|d↓〉)/√2  . (8)

This state is invariant under the rotations of the basis. For instance, instead of the eigen-
states of |↑〉 and |↓〉 of σ̂z one can rewrite |Φc〉 in terms of the eigenstates of σ̂x:

|�〉 = (|↑〉 + |↓〉)/√2  , (9a)

|⊗〉 = (|↑〉 – |↓〉)/√2  . (9b)
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This representation immediately yields

|Φc〉 = – (|�〉|d�〉 – |⊗〉|d⊗〉)/√2  ,                (10)

where

|d�〉 = (|d↓〉 – |d↑〉)/√2  and |d⊗〉 = (|d↑〉 + |d↓〉)/√2 (11)

are, as a consequence of the superposition principle, perfectly “legal” states in the
Hilbert space of the quantum detector. Therefore, the density matrix

ρc = |Φc〉〈Φc|

could have many (in fact, infinitely many) different states of the subsystems on the
diagonal. 

This freedom to choose a basis  should not come as a surprise. Except for the
notation, the state vector |Φc〉 is the same as the wave function of a pair of maxi-
mally correlated (or entangled) spin-1/2 systems in David Bohm’s version (1951)
of the Einstein-Podolsky-Rosen (EPR) paradox (Einstein et al. 1935). And the
experiments that show that such nonseparable quantum correlations violate Bell’s
inequalities (Bell 1964) are demonstrating the following key point: The states of
the two spins in a system described by |Φc〉 are not just unknown, but rather they
cannot exist before the “real” measurement (Aspect et al. 1981, 1982). We con-
clude that when a detector is quantum, a superposition of records exists and is a
record of a superposition of outcomes—a very nonclassical state of affairs.

Missing Information and Decoherence

Unitary evolution condemns every closed quantum system to “purity.” Yet, if the
outcomes of a measurement are to become independent events, with consequences
that can be explored separately, a way must be found to dispose of the excess infor-
mation. In the previous sections, quantum correlation was analyzed from the point
of view of its role in acquiring information. Here, I shall discuss the flip side of the
story: Quantum correlations can also disperse information throughout the degrees
of freedom that are, in effect, inaccessible to the observer. Interaction with the
degrees of freedom external to the system—which we shall summarily refer to as
the environment—offers such a possibility. 

Reduction of the state vector, ρc ⇒ ρr, decreases the information available to
the observer about the composite system SD. The information loss is needed if
the outcomes are to become classical and thereby available as initial conditions to
predict the future. The effect of this loss is to increase the entropy H = –Trρ lnρ
by an amount

∆H = H(ρr) – H(ρc) = – (|α|2 ln|α|2 + |β|2 ln|β|2)  . (12)

Entropy must increase because the initial state described by ρc was pure,
H(ρc) = 0, and the reduced state is mixed. Information gain—the objective of the
measurement—is accomplished only when the observer interacts and becomes
correlated with the detector in the already precollapsed state ρr. 
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To illustrate the process of the environment-induced decoherence, consider a 
system S, a detector D, and an environment E. The environment is also a quantum 
system. Following the first step of the measurement process—establishment of a 
correlation as shown in Equation (5)—the environment similarly interacts and 
becomes correlated with the apparatus:

|Φc〉| E0〉 = (α|↑〉|d↑〉 + β|↓〉|d↓〉)| E 0〉 ⇒ α|↑〉|d↑〉| E ↑〉 + β|↓〉|d↓〉| E ↓〉 = |Ψ〉 .        (13)

The final state of the combined SDE “von Neumann chain” of correlated systems
extends the correlation beyond the SD pair. When the states of the environment |Ei〉
corresponding to the states |d↑〉 and |d↓〉 of the detector are orthogonal, 〈Ei|Ei′〉 = δii′,
the density matrix for the detector-system combination is obtained by ignoring (tracing
over) the information in the uncontrolled (and unknown) degrees of freedom

ρ
DS

= Tr
E

|Ψ〉〈Ψ| = Σ i〈Ei|Ψ〉〈Ψ|Ei′〉 = |α|2|↑〉〈↑||d↑〉〈d↑| + |β|2|↓〉〈↓||d↓〉〈d↓| = ρr .      (14)

The resulting ρr is precisely the reduced density matrix that von Neumann called for.
Now, in contrast to the situation described by Equations (9)–(11), a superposition of the
records of the detector states is no longer a record of a superposition of the state of the
system. A preferred basis of the detector, sometimes called the “pointer basis” for obvi-
ous reasons, has emerged. Moreover, we have obtained it—or so it appears—without
having to appeal to von Neumann’s nonunitary process 1 or anything else beyond the
ordinary, unitary Schrödinger evolution. The preferred basis of the detector—or for that
matter, of any open quantum system—is selected by the dynamics.

Not all aspects of this process are completely clear. It is, however, certain that the
detector–environment interaction Hamiltonian plays a decisive role. In particular, when
the interaction with the environment dominates, eigenspaces of any observable Λ that
commutes with the interaction Hamiltonian,

[Λ, Hint] = 0  , (15)

invariably end up on the diagonal of the reduced density matrix (Zurek 1981, 1982).
This commutation relation has a simple physical implication: It guarantees that the
pointer observable Λ will be a constant of motion, a conserved quantity under the evolu-
tion generated by the interaction Hamiltonian. Thus, when a system is in an eigenstate
of Λ, interaction with the environment will leave it unperturbed. 

In the real world, the spreading of quantum correlations is practically inevitable. For
example, when in the course of measuring the state of a spin-1/2 atom (see Figure 1b), a
photon had scattered from the atom while it was traveling along one of its two alterna-
tive routes, this interaction would have resulted in a correlation with the environment
and would have necessarily led to a loss of quantum coherence. The density matrix of
the SD pair would have lost its off-diagonal terms. Moreover, given that it is impossible
to catch up with the photon, such loss of coherence would have been irreversible. As we
shall see later, irreversibility could also arise from more familiar, statistical causes:
Environments are notorious for having large numbers of interacting degrees of freedom,
making extraction of lost information as difficult as reversing trajectories in the
Boltzmann gas. 
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The contrast between the density matrices in
Equations (6) and (7) is stark and obvious. In particu-
lar, the entanglement between the system and the
detector in ρc is obviously quantum—classical sys-
tems cannot be entangled. The argument against the
“ignorance” interpretation of ρc still stands. Yet we
would like to have a quantitative measure of how
much is classical (or how much is quantum) about the
correlations of a state represented by a general density
matrix. Such a measure of the quantumness of corre-
lation was devised recently (Ollivier and Zurek 2002).
It is known as quantum discord. Of the several closely
related definitions of discord, we shall select one that
is easiest to explain. It is based on mutual informa-
tion—an information-theoretic measure of how much
easier it is to describe the state of a pair of objects 
(S, D) jointly rather than separately. One formula for
mutual information I(S:D) is simply 

I(S:D) = H(S) + H(D) – H(S, D),

where H(S) and H(D) are the entropies of S and D,
respectively, and H(S, D) is the joint entropy of the
two. When S and D are not correlated (statistically
independent),

H(S, D) = H(S) + H(D),

and I(S:D) = 0. By contrast, when there is a perfect
classical correlation between them (for example, two
copies of the same book), H(S, D) = H(S) = H(D)
= I(S:D). Perfect classical correlation implies that,
when we find out all about one of them, we also know
everything about the other, and the conditional
entropy H(S|D) (a measure of the uncertainty about
S after the state of D is found out) disappears.
Indeed, classically, the joint entropy H(S, D) can
always be decomposed into, say, H(D), which meas-
ures the information missing about D, and the condi-
tional entropy H(S|D). Information is still missing
about S even after the state of D has been deter-
mined: H(S, D) = H(D) + H(S|D). This expression
for the joint entropy suggests an obvious rewrite of
the preceding definition of mutual information into a
classically identical form, namely,

J(S:D) = H(S) + H(D) – (H(D) + H(S|D)). 

Here, we have abstained from the obvious (and per-
fectly justified from a classical viewpoint) cancella-
tion in order to emphasize the central feature of quan-

tumness: In quantum physics, the state collapses into
one of the eigenstates of the measured observable.
Hence, a state of the object is redefined by a measure-
ment. Thus, the joint entropy can be defined in terms
of the conditional entropy only after the measurement
used to access, say, D, has been specified. In that
case,

H |dk〉(S, D) = (H(D) + H(S|D))|dk〉 . 

This type of joint entropy expresses the ignorance
about the pair (S, D) after the observable with the
eigenstates {|dk〉} has been measured on D. Of course,
H |dk〉(S, D) is not the only way to define the entropy
of the pair. One can also compute a basis-independent
joint entropy H(S, D), the von Neumann entropy of
the pair. Since these two definitions of joint entropy
do not coincide in the quantum case, we can define a
basis-dependent quantum discord 

δ |dk〉(S|D) = I – J = (H(D) + H(S|D))|dk〉 – H(S,D)

as the measure of the extent by which the underlying
density matrix describing S and D is perturbed by a
measurement of the observable with the eigenstates
{|dk〉}. States of classical objects—or classical corre-
lations—are “objective:” They exist independent of
measurements. Hence, when there is a basis {|d̂k〉}
such that the minimum discord evaluated for this basis
disappears,

δ̂ (S|D) = min{|dk〉}(H(S,D) – (H(D) +H(S|D))|dk〉) = 0,

the correlation can be regarded as effectively classical
(or more precisely, as “classically accessible through
D”). One can then show that there is a set of probabil-
ities associated with the basis {|dk〉} that can be treat-
ed as classical. It is straightforward to see that, when
S and D are entangled (for example, ρc = |φc 〉〈φc|),
then δ̂ > 0 in all bases. By contrast, if we consider ρr,
discord disappears in the basis {|d↑〉, |d↓〉} so that the
underlying correlation is effectively classical. 

It is important to emphasize that quantum discord is
not just another measure of entanglement but a gen-
uine measure of the quantumness of correlations. In
situations involving measurements and decoherence,
quantumness disappears for the preferred set of states
that are effectively classical and thus serves as an
indicator of the pointer basis, which as we shall see,
emerges as a result of decoherence and einselection. 

Quantum Discord—A Measure of Quantumness



Decoherence: How Long Does It Take?

A tractable model of the environment is afforded by a collection of harmonic oscilla-
tors (Feynman and Vernon 1963, Dekker 1981, Caldeira and Leggett 1983a, 1983b,
1985, Joos and Zeh 1985, Hu et al. 1992) or, equivalently, by a quantum field (Unruh
and Zurek 1989). If a particle is present, excitations of the field will scatter off the parti-
cle. The resulting “ripples” will constitute a record of its position, shape, orientation,
and so on, and most important, its instantaneous location and hence its trajectory. 

A boat traveling on a quiet lake or a stone that fell into water will leave such an
imprint on the water surface. Our eyesight relies on the perturbation left by the objects
on the preexisting state of the electromagnetic field. Hence, it is hardly surprising that
an imprint is left whenever two quantum systems interact, even when “nobody is 
looking,” and even when the lake is stormy and full of preexisting waves, and the field
is full of excitations—that is, when the environment starts in equilibrium at some finite
temperature. “Messy” initial states of the environment make it difficult to decipher the
record, but do not preclude its existence.

A specific example of decoherence—a particle at position x interacting with a scalar
field φ (which can be regarded as a collection of harmonic oscillators) through the
Hamiltonian

Hint = � x dφ/dt  , (16)

where � is the strength of the coupling, has been extensively studied by many, including
the investigators just referenced. The conclusion is easily formulated in the so-called
“high-temperature limit,” in which only thermal-excitation effects of the field φ are
taken into account and the effect of zero-point vacuum fluctuations is neglected. 

In this case, the density matrix ρ(x, x′) of the particle in the position representation
evolves according to the master equation

(17)

where H is the particle’s Hamiltonian (although with the potential V(x) adjusted because
of Hint), γ is the relaxation rate, kB is the Boltzmann constant, and T is the temperature
of the field. Equation (17) is obtained by first solving exactly the Schrödinger equation
for a particle plus the field and then tracing over the degrees of freedom of the field.

I will not analyze Equation (17) in detail but just point out that it naturally separates
into three distinct terms, each of them responsible for a different aspect of the effectively
classical behavior. The first term—the von Neumann equation (which can be derived
from the Schrödinger equation)—generates reversible classical evolution of the expecta-
tion value of any observable that has a classical counterpart regardless of the form of ρ
(Ehrenfest’s theorem). The second term causes dissipation. The relaxation rate γ = η/2m
is proportional to the viscosity η = �2/2 because of the interaction with the scalar field.
That interaction causes a decrease in the average momentum and loss of energy. The last
term also has a classical counterpart: It is responsible for fluctuations or random “kicks”
that lead to Brownian motion. We shall see this in more detail in the next section. 
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∆x

χ+
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χ–

Figure 2. A “Schrödinger
Cat” State or a Coherent
Superposition
This cat state ϕ (x), the coher-
ent superposition of two
Gaussian wave packets of
Equation (18), could describe 
a particle in a superposition 
of locations inside a Stern-
Gerlach apparatus (see 
Figure 1) or the state that 
develops in the course of 
a double-slit experiment.
The phase between the two 
components has been chosen
to be zero.
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For our purposes, the effect of the last term on quantum superpositions is of great-
est interest. I shall show that it destroys quantum coherence, eliminating off-diagonal
terms responsible for quantum correlations between spatially separated pieces of the
wave packet. It is therefore responsible for the classical structure of the phase space,
as it converts superpositions into mixtures of localized wave packets which, in the
classical limit, turn into the familiar points in phase space. This effect is best illus-
trated by an example. Consider the “cat” state shown in Figure 2, where the wave
function of a particle is given by a coherent superposition of two Gaussians:
ϕ (x) = (χ+(x) + χ– (x))/21/2 and the Gaussians are

(18)

For the case of wide separation (∆x > > δ), the corresponding density matrix 
ρ(x, x′) = ϕ (x) ϕ*(x′) has four peaks: Two on the diagonal defined by x = x′, and two 
off the diagonal for which x and x′ are very different (see Figure 3). Quantum coherence
is due to the off-diagonal peaks. As those peaks disappear, position emerges as an
approximate preferred basis.

The last term of Equation (17), which is proportional to (x – x′)2, has little effect on
the diagonal peaks. By contrast, it has a large effect on the off-diagonal peaks for which
(x – x′)2 is approximately the square of the separation (∆x)2. In particular, it causes the 

off-diagonal peaks to decay at the rate 

It follows that quantum coherence will disappear on a decoherence time scale (Zurek 1984):

(19)

where λdB = h/(2mkBT )–1/2 is the thermal de Broglie wavelength. For macroscopic
objects, the decoherence time τD is typically much less than the relaxation time τR = γ –1.
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Figure 3. Evolution of the
Density Matrix for the
Schrödinger Cat State in
Figure 2 
(a)This plot shows the density
matrix for the cat state in
Figure 2 in the position repre-
sentation ρ(x, x′) = ϕ(x)ϕ*(x).
The peaks near the diagonal
(green) correspond to the two
possible locations of the parti-
cle. The peaks away from the
diagonal (red) are due to quan-
tum coherence. Their existence
and size demonstrate that the
particle is not in either of the
two approximate locations but
in a coherent superposition of
them. (b) Environment-induced
decoherence causes decay of
the off-diagonal terms of 
ρ(x, x′). Here, the density matrix
in (a) has partially decohered.
Further decoherence would
result in a density matrix with
diagonal peaks only. It can then
be regarded as a classical
probability distribution with an
equal probability of finding the
particle in either of the loca-
tions corresponding to the
Gaussian wave packets.

(a) (b)

x x
x ′ x ′

d

dt
mk T xB Dρ γ ρ τ ρ+− +− − +( ) ( ) =~ 2 2 2 1h ∆ .



For a system at temperature T = 300 kelvins with mass m = 1 gram and separation 
∆x = 1 centimeter, the ratio of the two time scales is τD/τR ~ 10–40! Thus, even if the
relaxation rate were of the order of the age of the Universe, ~1017 seconds, quantum
coherence would be destroyed in τD ~ 10–23 second.

For microscopic systems and, occasionally, even for very macroscopic ones, the deco-
herence times are relatively long. For an electron (me = 10–27 grams), τD can be much
larger than the other relevant time scales on atomic and larger energy and distance scales.
For a massive Weber bar, tiny ∆x (~10–17 centimeter) and cryogenic temperatures sup-
press decoherence. Nevertheless, the macroscopic nature of the object is certainly crucial
in facilitating the transition from quantum to classical.
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A great deal of work on master equations and their derivations in different 
situations has been conducted since 1991, but in effect, most of the results
described above stand. A summary can be found in Paz and Zurek (2001) and
a discussion of the caveats to the simple conclusions regarding decoherence
rates appears in James Anglin et al. (1997). 

Perhaps the most important development in the study of decoherence is on the
experimental front. In the past decade, several experiments probing decoher-
ence in various systems have been carried out. In particular, Michel Brune,
Serge Haroche, Jean-Michel Raimond, and their colleagues at École Normale
Supérieure in Paris (Brune et al. 1996, Haroche 1998) have performed a series
of microwave cavity experiments in which they manipulate electromagnetic
fields into a Schrödinger-cat-like superposition using rubidium atoms. They
probe the ensuing loss of quantum coherence. These experiments have con-
firmed the basic tenets of decoherence theory. Since then, the French scientists
have applied the same techniques to implement various quantum information-
processing ventures. They are in the process of upgrading their equipment 
in order to produce “bigger and better” Schrödinger cats and to study their
decoherence.

A little later, Wineland, Monroe, and coworkers (Turchette et al. 2000) used
ion traps (set up to implement a fragment of one of the quantum computer
designs) to study the decoherence of ions due to radiation. Again, theory was
confirmed, further advancing the status of decoherence as both a key ingredi-
ent of the explanation of the emergent classicality and a threat to quantum
computation. In addition to these developments, which test various aspects of
decoherence induced by a real or simulated “large environment,” Pritchard 
and his coworkers at the Massachusetts Institute of Technology have carried
out a beautiful sequence of experiments by using atomic interferometry in
order to investigate the role of information transfer between atoms and 
photons (see Kokorowski et al. 2001 and other references therein). Finally,
“analogue experiments” simulating the behavior of the Schrödinger equation in
optics (Cheng and Raymer 1999) have explored some of the otherwise diffi-
cult-to-access corners of the parameter space. 

In addition to these essentially mesoscopic Schrödinger-cat decoherence 
experiments, designs of much more substantial “cats” (for example,
mirrors in superpositions of quantum states) are being investigated in 
several laboratories.

Experiments on Decoherence



Classical Limit of Quantum Dynamics

The Schrödinger equation was deduced from classical mechanics in the Hamilton-
Jacobi form. Thus, it is no surprise that it yields classical equations of motion when h
can be regarded as small. This fact, along with Ehrenfest’s theorem, Bohr’s correspon-
dence principle, and the kinship of quantum commutators with the classical Poisson
brackets, is part of the standard lore found in textbooks. However, establishing the quan-
tum–classical correspondence involves the states as well as the equations of motion.
Quantum mechanics is formulated in Hilbert space, which can accommodate localized
wave packets with sensible classical limits as well as the most bizarre superpositions.
By contrast, classical dynamics happens in phase space.

To facilitate the study of the transition from quantum to classical behavior, it is con-
venient to employ the Wigner transform of a wave function ψ(x):

(20)

which expresses quantum states as functions of position and momentum.
The Wigner distribution W(x,p) is real, but it can be negative. Hence, it cannot be 

regarded as a probability distribution. Nevertheless, when integrated over one of the two vari-
ables, it yields the probability distribution for the other (for example, ∫ W(x,p)dp = |ψ(x)|2).
For a minimum uncertainty wave packet, ψ(x) = π–1/4δ–1/2exp{– (x – x0)2/2δ2 + ip0x/h},
the Wigner distribution is a Gaussian in both x and p:

(21)

It describes a system that is localized in both x and p. Nothing else that Hilbert space
has to offer is closer to approximating a point in classical phase space. The Wigner dis-
tribution is easily generalized to the case of a general density matrix ρ(x,x′):

(22)

where ρ(x,x′) is, for example, the reduced density matrix of the particle discussed before.
The phase-space nature of the Wigner transform suggests a strategy for exhibiting

classical behavior: Whenever W (x,p) represents a mixture of localized wave packets—
as in Equation (21)—it can be regarded as a classical probability distribution in the
phase space. However, when the underlying state is truly quantum, as is the superposi-
tion in Figure 2, the corresponding Wigner distribution function will have alternating
sign—see Figure 4(a). This property alone will make it impossible to regard the function
as a probability distribution in phase space. The Wigner function in Figure 4(a) is

(23)

where the Gaussians W+ and W – are Wigner transforms of the Gaussian wave packets
χ+ and χ–. If the underlying state had been a mixture of χ+ and χ– rather than a super-
position, the Wigner function  would have been described by the same two Gaussians
W+ and W –, but the oscillating term would have been absent.
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The equation of motion for W(x, p) of a particle coupled to an environment can be
obtained from Equation (17) for ρ(x, x′):

(24)

where V is the renormalized potential and D = 2mγ kBT = ηkBT. The three terms of this
equation correspond to the three terms of Equation (17).

The first term is easily identified as a classical Poisson bracket {H, W}. That is,
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Figure 4. Wigner
Distributions and Their
Decoherence for Coherent
Superpositions
(a) The Wigner distribution
W (x,p ) is plotted as a function
of x and p for the cat state of
Figure 2. Note the two separate
positive peaks as well as the
oscillating interference term 
in between them. This distribu-
tion cannot be regarded as a
classical probability distribu-
tion in phase space because it
has negative contributions.
(b–e) Decoherence produces
diffusion in the direction of the
momentum. As a result, the
negative and positive ripples
of the interference term in
W (x,p ) diffuse into each other
and cancel out. This process is
almost instantaneous for open
macroscopic systems. In the
appropriate limit, the Wigner
function has a classical 
structure in phase space and
evolves in accord with the
equations of classical dynam-
ics. (a′–e′) The analogous 
initial Wigner distribution and
its evolution for a superposi-
tion of momenta are shown.
The interference terms disap-
pear more slowly on a time
scale dictated by the dynamics
of the system: Decoherence is
caused by the environment
coupling to (that is, monitor-
ing) the position of the 
system—see Equation(16).
So, for a superposition of
momenta, it will start only after
different velocities move 
the two peaks into different
locations.
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if w(x, p) is a familiar classical probability density in phase space, then it evolves
according to:

(25)

where L stands for the Liouville operator. Thus, classical dynamics in its Liouville
form follows from quantum dynamics at least for the harmonic oscillator case,
which is described rigorously by Equations (17) and (24). (For more general V(x),
the Poisson bracket would have to be supplemented by quantum corrections of order
h.) The second term of Equation (24) represents friction. The last term results in the
diffusion of W(x, p) in momentum at the rate given by D. 
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Since 1991, understanding the emergence of preferred
pointer states during the process of decoherence has
advanced a great deal. Perhaps the most important
advance is the predictability sieve (Zurek 1993, Zurek
et al. 1993), a more general definition of pointer states
that applies even when the interaction with the envi-
ronment does not dominate over the self-Hamiltonian
of the system. The predictability sieve sifts through
the Hilbert space of a system interacting with its envi-
ronment and selects states that are most predictable.
Motivation for the predictability sieve comes from the
observation that classical states exist or evolve pre-
dictably. Therefore, selecting quantum states that
retain predictability in spite of the coupling to the
environment is the obvious strategy in search of clas-
sicality. To implement the predictability sieve, we
imagine a (continuously infinite) list of all the pure
states {|ψ〉} in the Hilbert space of the system in
question. Each of them would evolve, after a time t,
into a density matrix ρ|ψ〉(t). If the system were isolat-
ed, all the density matrices would have the form
ρ|ψ〉(t) = |ψ(t)〉〈ψ(t)| of projection operators, where
|ψ(t)〉 is the appropriate solution of the Schrödinger
equation. But when the system is coupled to the 
environment (that is, the system is “open”), ρ|ψ〉(t) 
is truly mixed and has a nonzero von Neumann
entropy. Thus, one can compute 
H(ρ|ψ〉(t)) = –Trρ|ψ〉(t) logρ|ψ〉(t), thereby defining a
functional on the Hilbert space H

S
of the system,

|ψ〉 → H(|ψ〉, t). 

An obvious way to look for predictable, effectively clas-
sical states is to seek a subset of all {|ψ〉} that minimize
H(|ψ〉, t) after a certain, sufficiently long time t. When
such preferred pointer states exist, are well defined (that
is, the minimum of the entropy H(|ψ〉,t) differs signifi-
cantly for pointer states from the average value), and are
reasonably stable (that is, after the initial decoherence

time, the set of preferred states is reasonably insensitive
to the precise value of t), one can consider them as good
candidates for the classical domain. Figure A illustrates
an implementation of the predictability sieve strategy
using a different, simpler measure of predictability—
purity (Trρ2)—rather than the von Neumann entropy,
which is much more difficult to compute. 

Figure A. The Predictability Sieve for the
Underdamped Harmonic Oscillator
One measure of predictability is the so-called purity
Trρ2, which is plotted as a function of time for mixtures
of minimum uncertainty wave packets in an under-
damped harmonic oscillator with γ/ω = 10–4. The wave
packets start with different squeeze parameters s. Trρ2

serves as a measure of the purity of the reduced den-
sity matrix ρ. The predictability sieve favors coherent
states (s = 1), which have the shape of a ground state,
that is, the same spread in position and momentum
when measured in units natural for the harmonic 
oscillator. Because they are the most predictable
(more than the energy eigenstates), they are expected
to play the crucial role of the pointer basis in the 
transition from quantum to classical.
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Classical mechanics “happens” in phase space. It is
therefore critically important to show that quantum 
theory can—in the presence of decoherence—reproduce
the basic structure of classical phase space and that it
can emulate classical dynamics. The argument put 
forward in my original paper (1991) has since been
amply supported by several related developments. 

The crucial idealization that plays a key role in classi-
cal physics is a “point.” Because of Heisenberg’s prin-
ciple, ∆x ∆p ≥ h/2, quantum theory does not admit
states with simultaneously vanishing ∆x and ∆p.
However, as the study of the predictability sieve has
demonstrated, in many situations relevant to the classi-
cal limit of quantum dynamics, one can expect decoher-
ence to select pointer states that are localized in both
∆x and ∆p, that is, approximate minimum uncertainty
wave packets. In effect, these wave packets are a quan-
tum version of points, which appear naturally in the
underdamped harmonic oscillator coupled weakly to the
environment (Zurek et al. 1993, Gallis 1996). These
results are also relevant to the transition from quantum
to classical in the context of field theory with the added
twist that the kinds of states selected will typically dif-
fer for bosonic and fermionic fields (Anglin and Zurek
1996) because bosons and fermions tend to couple dif-
ferently to their environments. Finally, under suitable
circumstances, einselection can even single out energy
eigenstates of the self-Hamiltonian of the system, thus
justifying in part the perception of “quantum jumps”
(Paz and Zurek 1999).

An intriguing arena for the discussion of quantum-clas-
sical correspondence is quantum chaos. To begin with,
classical and quantum evolutions from the same initial
conditions of a system lead to very different phase-
space “portraits.” The quantum phase-space portrait 
will depend on the particular representation used, but
there are good reasons to favor the Wigner distribution.
Studies that use the Wigner distribution indicate that,
at the moment when quantum-classical correspondence
is lost in chaotic dynamics, even the averages computed
using properties of the classical and quantum states
begin to differ (Karkuszewski et al. 2002).

Decoherence appears to be very effective in restoring
correspondence. This point, originally demonstrated
almost a decade ago (Zurek and Paz 1994, 1995) has
since been amply corroborated by numerical evidence
(Habib et al. 1998). Basically, decoherence eradicates
the small-scale interference accompanying the rapid
development of large-scale coherence in quantum ver-

sions of classically chaotic systems (refer to Figure A).
This outcome was expected. In order for the quantum to
classical correspondence to hold, the coherence length
lC of the quantum state must satisfy the following
inequality: lC = h/(2Dλ)1/2 << χ, where λ is the
Lyapunov exponent, D is the usual coefficient describ-
ing the rate of decoherence, and χ is the scale on which
the potential V(x) is significantly nonlinear:

When a quantum state is localized on scales small com-
pared to χ (which is the import of the inequality above),
its phase space evolution is effectively classical, but
because of chaos and decoherence, it becomes irre-
versible and unpredictable. Nevertheless—as argued by
Tanmoy Bhattacharya, Salman Habib, and Kurt Jacobs
in the article “The Emergence of Classical Dynamics in
a Quantum World” on page 110—one can even recover
more or less classical trajectories by modeling a contin-
uous measurement. However, this is an extra ingredient
not in the spirit of the decoherence approach as it
invokes the measurement process without explaining it. 

A surprising corollary of this line of argument is the
realization (Zurek and Paz 1994) that the dynamical 
second law—entropy production at the scale set by the
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This numerical study (Habib et al. 1998) of a chaotic 
driven double-well system described by the Hamiltonian
H = p2/2m – Ax2 + Bx4+ Fx cos(ωt) with m = 1, A = 10, B = 0.5,
F = 10, and ω = 6.07 illustrates the effectiveness of decoher-
ence in the transition from quantum to classical. These
parameters result in a chaotic classical system with a
Lyapunov exponent λ ≅ 0.5. The three snapshots taken after
8 periods of the driving force illustrate phase space distribu-
tions in (a) the quantum case, (b) the classical case, and 
(c) the quantum case but with decoherence (D = 0.025).
The initial condition was always the same Gaussian, and in
the quantum cases, the state was pure. Interference fringes

are clearly visible in (a), which bears only a vague resem-
blance to the classical distribution in (b). By contrast,
(c) shows that even modest decoherence helps restore 
the quantum-classical correspondence. In this example the
coherence length llC is not much smaller than the typical 
nonlinearity scale, so the system is on the border between
quantum and classical. Indeed, traces of quantum interference
are still visible in (c) as blue “troughs,” or regions where the
Wigner function is still slightly negative. The change in color
from red to blue shown in the legends for (a) and (c) corre-
sponds to a change from positive peaks to negative troughs.
In the ab initio classical case (b), there are no negative troughs.
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dynamics of the system and more or less independent of
the strength of the coupling to the environment—is a
natural and, indeed, an inevitable consequence of deco-
herence. This point has been since confirmed in numeri-
cal studies (Miller and Sarkar 1999, Pattanayak 1999,
Monteoliva and Paz 2000).

Other surprising consequences of the study of Wigner
functions in the quantum-chaotic context is the realiza-
tion that they develop phase space structure on the scale
associated with the sub-Planck action a = h2/A << h,
where A is the classical action of the system, and that this
sub-Planck action is physically significant (Zurek 2001b).
This can be seen in Figure A part (a), where a small black
square with the area of h is clearly larger than the small-
est “ripples” in the image.

This point was to some extent anticipated by the plots of
the Wigner functions of Schrödinger cats [see
Figures 4(a) and 4(a′) in this article] a version of which
appeared in the 1991 Physics Today version of this
paper—the interference term of the Wigner function has
a sub-Planck structure. 

A lot has happened in establishing phase-space aspects
of quantum-classical correspondence, but a lot more
remains to be done. (A more thorough summary of the
past accomplishments and remaining goals can be found
in Zurek 2001b).

(b) (c)

Figure A. Decoherence in a Chaotic Driven Double-Well System



Classical equations of motion are a necessary but insufficient ingredient of the classical
limit: We must also obtain the correct structure of the classical phase space by barring all but
the probability distributions of well-localized wave packets. The last term in Equation (24)
has precisely this effect on nonclassical W(x,p). For example, the Wigner function for the
superposition of spatially localized wave packets—Figure 4(a)—has a sinusoidal modulation
in the momentum coordinate produced by the oscillating term cos((∆x/h)p). This term, how-
ever, is an eigenfunction of the diffusion operator ∂2/∂p2 in the last term of Equation (24).
As a result, the modulation is washed out by diffusion at a rate 

(26)

Negative valleys of W(x,p) fill in on a time scale of order τD, and the distribution
retains just two peaks, which now correspond to two classical alternatives—see Figures 4(a)
to 4(e). The Wigner function for a superposition of momenta, shown in Figure 4(a′), also
decoheres as the dynamics causes the resulting difference in velocities to damp out the
oscillations in position and again yield two classical alternatives—see Figures 4(b′) to 4(e′). 

The ratio of the decoherence and relaxation time scales depends on h2/m—see
Equation (19). Therefore, when m is large and h small, τD can be nearly zero—decoher-
ence can be nearly instantaneous—while, at the same time, the motion of small patches
(which correspond to the probability distribution in classical phase space) in the smooth
potential becomes reversible. This idealization is responsible for our confidence in classi-
cal mechanics, and, more generally, for many aspects of our belief in classical reality.

The discussion above demonstrates that decoherence and the transition from quantum
to classical (usually regarded as esoteric) is an inevitable consequence of the immersion of
a system in an environment. True, our considerations were based on a fairly specific
model—a particle in a heat bath of harmonic oscillators. However, this is often a reason-
able approximate model for many more complicated systems. Moreover, our key conclu-
sions—such as the relation between the decoherence and relaxation time scales in
Equation (19)—do not depend on any specific features of the model. Thus, one can hope
that the viscosity and the resulting relaxation always imply decoherence and that the tran-
sition from quantum to classical can be always expected to take place on a time scale of
the order of the above estimates.

Quantum Theory of Classical Reality

Classical reality can be defined purely in terms of classical states obeying classical laws.
In the past few sections, we have seen how this reality emerges from the substrate of quan-
tum physics: Open quantum systems are forced into states described by localized wave
packets. They obey classical equations of motion, although with damping terms and fluctu-
ations that have a quantum origin. What else is there to explain?

Controversies regarding the interpretation of quantum physics originate in the clash
between the predictions of the Schrödinger equation and our perceptions. I will therefore
conclude this paper by revisiting the source of the problem—our awareness of definite out-
comes. If these mental processes were essentially unphysical, there would be no hope of
formulating and addressing the ultimate question—why do we perceive just one of the
quantum alternatives?—within the context of physics. Indeed, one might be tempted to 
follow Eugene Wigner (1961) and give consciousness the last word in collapsing the state
vector. I shall assume the opposite. That is, I shall examine the idea that the higher mental
processes all correspond to well-defined, but at present, poorly understood information-
processing functions that are being carried out by physical systems, our brains.
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Described in this manner, awareness becomes susceptible to physical analysis. In partic-
ular, the process of decoherence we have described above is bound to affect the states of the
brain: Relevant observables of individual neurons, including chemical concentrations and
electrical potentials, are macroscopic. They obey classical, dissipative equations of motion.
Thus, any quantum superposition of the states of neurons will be destroyed far too quickly
for us to become conscious of the quantum “goings on.” Decoherence, or more to the point,
environment-induced superselection, applies to our own “state of mind.”

One might still ask why the preferred basis of neurons becomes correlated with the clas-
sical observables in the familiar universe. It would be, after all, so much easier to believe in
quantum physics if we could train our senses to perceive nonclassical superpositions. One
obvious reason is that the selection of the available interaction Hamiltonians is limited and
constrains the choice of detectable observables. There is, however, another reason for this
focus on the classical that must have played a decisive role: Our senses did not evolve for
the purpose of verifying quantum mechanics. Rather, they have developed in the process in
which survival of the fittest played a central role. There is no evolutionary reason for per-
ception when nothing can be gained from prediction. And, as the predictability sieve illus-
trates, only quantum states that are robust in spite of decoherence, and hence, effectively
classical, have predictable consequences. Indeed, classical reality can be regarded as nearly
synonymous with predictability. 

There is little doubt that the process of decoherence sketched in this paper is an impor-
tant element of the big picture central to understanding the transition from quantum to clas-
sical. Decoherence destroys superpositions. The environment induces, in effect, a superse-
lection rule that prevents certain superpositions from being observed. Only states that sur-
vive this process can become classical.

There is even less doubt that this rough outline will be further extended. Much work
needs to be done both on technical issues (such as studying more realistic models that could
lead to additional experiments) and on problems that require new conceptual input (such as
defining what constitutes a “system” or answering the question of how an observer fits into
the big picture).

Decoherence is of use within the framework of either of the two interpretations: It can
supply a definition of the branches in Everett’s Many Worlds Interpretation, but it can also
delineate the border that is so central to Bohr’s point of view. And if there is one lesson to
be learned from what we already know about such matters, it is that information and its
transfer play a key role in the quantum universe. 

The natural sciences were built on a tacit assumption: Information about the universe can
be acquired without changing its state. The ideal of “hard science” was to be objective and
provide a description of reality. Information was regarded as unphysical, ethereal, a mere
record of the tangible, material universe, an inconsequential reflection, existing beyond and
essentially decoupled from the domain governed by the laws of physics. This view is no
longer tenable (Landauer 1991). Quantum theory has put an end to this Laplacean dream
about a mechanical universe. Observers of quantum phenomena can no longer be just pas-
sive spectators. Quantum laws make it impossible to gain information without changing the
state of the measured object. The dividing line between what is and what is known to be has
been blurred forever. While abolishing this boundary, quantum theory has simultaneously
deprived the “conscious observer” of a monopoly on acquiring and storing information: Any
correlation is a registration, any quantum state is a record of some other quantum state.
When correlations are robust enough, or the record is sufficiently indelible, familiar classical
“objective reality” emerges from the quantum substrate. Moreover, even a minute interaction
with the environment, practically inevitable for any macroscopic object, will establish such a
correlation: The environment will, in effect, measure the state of the object, and this suffices
to destroy quantum coherence. The resulting decoherence plays, therefore, a vital role in
facilitating the transition from quantum to classical. 
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The quantum theory of classical reality has developed sig-
nificantly since 1991. These advances are now collectively
known as the existential interpretation (Zurek 2001a). The
basic difference between quantum and classical states is
that the objective existence of the latter can be taken for
granted. That is, a system’s classical state can be simply
“found out” by an observer originally ignorant of any of
its characteristics. By contrast, quantum states are hope-
lessly “malleable”—it is impossible in principle for an
observer to find out an unknown quantum state without
perturbing it. The only exception to this rule occurs when
an observer knows beforehand that the unknown state is
one of the eigenstates of some definite observable. Then
and only then can a nondemolition measurement
(Caves et al. 1980) of that observable be
devised such that another observer who
knew the original state would not notice
any perturbations when making a 
confirmatory measurement.

If the unknown state cannot be found
out—as is indeed the case for isolated
quantum systems—then one can make a
persuasive case that such states are sub-
jective, and that quantum state vectors are
merely records of the observer’s knowledge
about the state of a fragment of the Universe
(Fuchs and Peres 2000). However, einselection is
capable of converting such malleable and “unreal”
quantum states into solid elements of reality. Several ways to
argue this point have been developed since the early discus-
sions (Zurek 1993, 1998, 2001a). In effect, all of them rely
on einselection, the emergence of the preferred set of pointer
states. Thus, observers aware of the structure of the
Hamiltonians (which are “objective,” can be found out with-
out “collateral damage”, and in the real world, are known
well enough in advance) can also divine the sets of preferred
pointer states (if they exist) and thus discover the preexisting
state of the system.

One way to understand this environment-induced objective
existence is to recognize that observers—especially human
observers—never measure anything directly. Instead, most
of our data about the Universe is acquired when information
about the systems of interest is intercepted and spread
throughout the environment. The environment preferentially
records the information about the pointer states, and hence,
only information about the pointer states is readily available.
This argument can be made more rigorous in simple mod-
els, whose redundancy can be more carefully quantified
(Zurek 2000, 2001a).

This is an area of ongoing research. Acquisition of informa-
tion about the systems from fragments of the environment
leads to the so-called conditional quantum dynamics, a 
subject related to quantum trajectories (Carmichael 1993). 

In particular one can show that the predictability sieve also
works in this setting (Dalvit et al. 2001).

The overarching open question of the interpretation of quan-
tum physics—the “meaning of the wave function”—appears
to be in part answered by these recent developments. 
Two alternatives are usually listed as the only conceivable
answers. The possibility that the state vector is purely epis-
temological (that is, solely a record of the observer’s knowl-
edge) is often associated with the Copenhagen Interpretation
(Bohr 1928). The trouble with this view is that there is no
unified description of the Universe as a whole: The classical
domain of the Universe is a necessary prerequisite, so both

classical and quantum theory are necessary and 
the border between them is, at best, ill-defined.

The alternative is to regard the state vector
as an ontological entity—as a solid

description of the state of the Universe
akin to the classical states. But in this
case (favored by the supporters of
Everett’s Many Worlds Interpretation),
everything consistent with the universal
state vector needs to be regarded as

equally “real.”

The view that seems to be emerging from
the theory of decoherence is in some sense

somewhere in between these two extremes.
Quantum state vectors can be real, but only when the

superposition principle—a cornerstone of quantum behav-
ior—is “turned off” by einselection. Yet einselection is
caused by the transfer of information about selected 
observables. Hence, the ontological features of the state 
vectors—objective existence of the einselected states—is
acquired through the epistemological “information transfer.”

Obviously, more remains to be done. Equally obviously,
however, decoherence and einselection are here to stay. They
constrain the possible solutions after the quantum–classical
transition in a manner suggestive of a still more radical view
of the ultimate interpretation of quantum theory in which
information seems destined to play a central role. Further
speculative discussion of this point is beyond the scope of
the present paper, but it will be certainly brought to the fore
by (paradoxically) perhaps the most promising applications
of quantum physics to information processing. Indeed,
quantum computing inevitably poses questions that probe
the very core of the distinction between quantum and classi-
cal. This development is an example of the unpredictability
and serendipity of the process of scientific discovery:
Questions originally asked for the most impractical of 
reasons—questions about the EPR paradox, the quantum-
to-classical transition, the role of information, and the 
interpretation of the quantum state vector—have become 
relevant to practical applications such as quantum 
cryptography and quantum computation. �
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Ever since the advent of quantum mechanics in the mid
1920s, it has been clear that the atoms composing matter 
do not obey Newton’s laws. Instead, their behavior is

described by the Schrödinger equation. Surprisingly though, until
recently, no clear explanation was given for why everyday
objects, which are merely collections of atoms, are observed to
obey Newton’s laws. It seemed that, if quantum mechanics
explains all the properties of atoms accurately, everyday objects
should obey quantum mechanics. As noted in the box to the right,
this reasoning led a few scientists to believe in a distinct macro-
scopic, or “big and complicated,” world in which quantum
mechanics fails and classical mechanics takes over although 
there has never been experimental evidence for such a failure.
Even those who insisted that Newtonian mechanics would 
somehow emerge from the underlying quantum mechanics as the
system became increasingly macroscopic were hindered by the
lack of adequate experimental tools. In the last decade, however,
this quantum-to-classical transition has become accessible to
experimental study and quantitative description, and the resulting
insights are the subject of this article.

The Emergence of
Classical Dynamics
in a Quantum World

Tanmoy Bhattacharya, Salman Habib, and Kurt Jacobs



The demands imposed by quantum mechanics on the 
disciplines of epistemology and ontology have occupied
the greatest minds. Unlike the theory of relativity, the other
great idea that shaped physical notions at the same time,
quantum mechanics does far more than modify Newton’s
equations of motion. Whereas relativity redefines the con-
cepts of space and time in terms of the observer, quantum
mechanics denies an aspect of reality to system properties
(such as position and momentum) until they are measured.
This apparent creation of reality upon measurement is so
profound a change that it has engendered an uneasiness
defying formal statement, not to mention a solution. 
The difficulties are often referred to as “the measurement
problem.” Carried to its logical extreme, the problem 
is that, if quantum mechanics were the ultimate theory,
it could deny any reality to the measurement results them-
selves unless they were observed by yet another system,
ad infinitum. Even the pioneers of quantum mechanics had
great difficulty conceiving of it as a fundamental theory
without relying on the existence of a classical world 
in which it is embedded (Landau and Lifshitz 1965).

Quantum mechanics challenges us on another front as well.
From our intuitive understanding of Bayes’ theorem for
conditional probability, we constantly infer the behavior of
systems that are observed incompletely. Quantum mechan-
ics, although probabilistic, violates Bayes’ theorem and
thereby our intuition. Yet the very basis for our concepts 
of space and time and for our intuitive Bayesian view
comes from observing the natural world. How come the
world appears to be so classical when the fundamental the-
ory describing it is manifestly not so? This is the problem
of the quantum-to-classical transition treated in this article. 

One of the reasons the quantum-to-classical transition took
so long to come under serious investigation may be that it
was confused with the measurement problem. In fact, the
problem of assigning intrinsic reality to properties of indi-
vidual quantum systems gave rise to a purely statistical inter-
pretation of quantum mechanics. In this view, quantum laws
apply only to ensembles of identically prepared systems. 

The quantum-to-classical transition may also have been
ignored in the early days because regular, rather than
chaotic, systems were the subject of interest. In the former
systems, individual trajectories carry little information, and
quantization is straightforward. Even though Henri Poincaré
(1992) had understood the key aspects of chaos and Albert
Einstein (1917) had realized its consequences for the 
Bohr-Sommerfeld quantization schemes, which were 
popular at that time, this subject was never in the spotlight,
and interest in it was not sustained until fairly recently. 

As experimental technology progressed to the point at
which single quanta could be measured with precision,
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the façade of ensemble statistics could no longer hide
the reality of the counterclassical nature of quantum
mechanics. In particular, a vast array of quantum fea-
tures, such as interference, came to be seen as everyday
occurrences in these experiments. 

Many interpretations of quantum mechanics developed.
Some appealed to an anthropic principle, according to
which life evolved to interpret the world classically,
others imagined a manifold of universes, and yet others
looked for a set of histories that were consistent enough
for classical reasoning to proceed (Omnès 1994, Zurek
in this issue). However, by themselves, these approaches
do not offer a dynamical explanation for the suppression
of interference in the classical world. The key realization
that led to a partial understanding of the classical limit
was that weak interactions of a system with its environ-
ment are universal (Landau and Lifshitz 1980) and
remove the nonclassical terms in the quantum evolution
(Zurek 1991). The folklore developed that this was the
the only effect of a sufficiently weak interaction in
almost any system. In fact, Wigner functions (the closest
quantum analogues to classical probability distributions
in phase space) did often become positive, but they
failed to become localized along individual classical tra-
jectories. In the heyday of ensemble interpretations, this
was not a problem because classical ensembles would
have been represented by exactly such distributions.
When applied to a single quantum system in a single
experiment, however, this delocalized positive distribu-
tion is distinctly dissatisfying. 

Furthermore, even when a state is describable by a 
positive distribution, it is not obvious that the dynamics
can be interpreted as the dynamics of any classical
ensemble without hypothesizing a multitude of “hidden”
variables (Schack and Caves 1999). And finally, the
original hope that a weak interaction merely erases 
interference turned out to be untenable, at least in some
systems (Habib et al. 2000).

The underlying reason for environmental action to pro-
duce a delocalized probability distribution is that even if
we take a single classical system with its initial (or sub-
sequent) positions unknown, our state of knowledge can
be encoded by that distribution. But in an actual experi-
ment, we do know the position of the system because 
we continuously measure it. Without this continuous (or
almost continuous) measurement, we would not have 
the concept of a classical trajectory. And without a clas-
sical trajectory, such remarkable signals of chaos as the
Lyapunov exponent would be experimentally immeasur-
able. These developments brought us to our current view
that continuous measurements provide the key to under-
standing the quantum-to-classical transition. 

A Historical Perspective



112 Los Alamos Science Number 27  2002

We will illustrate the problems involved in describing the quantum-to-classical
transition by using the example of a baseball moving through the air. Most often, we
describe how the ball moves through air, how it spins, or how it deforms. Regardless
of which degree of freedom we might consider—whether it is the position of the cen-
ter of mass, angular orientation, or deviation from sphericity—in the final analysis,
those variables are merely a combination of the positions (or other properties) of the
individual atoms. As all the properties of each of these atoms, including position, are
described by quantum mechanics, how is it that the ball as a whole obeys Newton’s
equation instead of some averaged form of the Schrödinger equation? 

Even more difficult to explain is how the chaotic behavior of classical, nonlinear sys-
tems emerges from the behavior of quantum systems. Classical, nonlinear, dynamical
systems exhibit extreme sensitivity to initial conditions. This means that, if the initial
states of two identical copies of a system (for example, particle positions and momenta)
differ by some tiny amount, those differences magnify with time at an exponential rate.
As a result, in a very short time, the two systems follow very different evolutionary
paths. On the other hand, concepts such as precise position and momentum do not make
sense according to quantum mechanics: We can describe the state of a system in terms
of these variables only probabilistically. The Schrödinger equation governing the evolu-
tion of these probabilities typically makes the probability distributions diffuse over time.
The final state of such systems is typically not very sensitive to the initial conditions,
and the systems do not exhibit chaos in the classical sense. 

The key to resolving these contradictions hinges on the following observation:
While macroscopic mechanical systems may be described by single quantum degrees
of freedom, those variables are subject to observation and interaction with their 
environment, which are continual influences. For example, a baseball’s center-of-mass
coordinate is continually affected by the numerous properties of the atoms composing
the baseball, including thermal motion, the air that surrounds it, which is also in ther-
mal motion, and the light that reflects off it. The process of observing the baseball’s
motion also involves interaction with the environment: Light reflected off the baseball
and captured by the observer’s eye creates a trace of the motion on the retina.

In the next section, we will show that, under conditions that refine the intuitive
concept of what is macroscopic, the motion of a quantum system is basically indistin-
guishable from that of a classical system! In effect, observing a quantum system pro-
vides information about it and counteracts the inherent tendency of the probability 
distribution to diffuse over time although observation creates an irreducible distur-
bance. In other words, as we see the system continuously, we know where it is and do
not have to rely upon the progressively imprecise theoretical predictions of where it
could be. When one takes into account this “localization” of the probability distribu-
tion encoding our knowledge of the system, the equations governing the expected
measurement results (that is, the equations telling us what we observe) become 
nonlinear in precisely the right way to recover an approximate form of classical
dynamics—for example, Newton’s laws in the baseball example. 

What happens when no one observes the system? Does the baseball suddenly start
behaving quantum mechanically if all observers close their eyes? The answer is hid-
den in a simple fact: Any interaction with a sufficiently complicated external world
has the same effect as a series of measurements whose results are not recorded. In
other words, the nature of the disturbance on the system due to the system’s interac-
tions with the external world is identical to that of the disturbance observed as an irre-
ducible component of measurement. Naturally, questions about the path of the
baseball can’t be verified if there are no observers, but other aspects of its classical
nature can, and do, survive.

The Emergence of Classical Dynamics in a Quantum World
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Classical vs Quantum Trajectories

Let us now turn to some significant details. To describe the motion of a single 
classical particle, all we need to do is specify a spatially dependent, and possibly time-
dependent, force that acts on the particle and substitute it into Newton’s equations. 
The resulting set of two coupled differential equations, one for the position x of the 
particle and the other for the momentum p, predicts the evolution of the particle’s state.
If the force on the particle is denoted by F(x, t), the equations of motion are

(1)

and

(2)

where V is the potential.
To visualize the motion, one can plot the particle’s position and momentum as they

change in time. The resulting curve is called a trajectory in phase space (see Figure 1).
The axes of phase space delineate the possible spatial and momentum coordinates that
the single particle can take. A classical particle’s state is given at any time by a point in
phase space, and its motion therefore traces out a curve, or trajectory, in phase space. 

By contrast, the state of a quantum particle is not described by a single point in phase
space. Because of the Heisenberg uncertainty principle, the position and momentum
cannot simultaneously be known with arbitrary precision, and the state of the system
must therefore be described by a kind of probability density in phase space. This
pseudoprobability function is called the Wigner function and is denoted by fW(x,p). As
expected for a true probability density, the integral of the Wigner function over position
gives the probability density for p, and the integral over p gives the probability density
for x. However, because the Wigner function may be negative in places, we should not
try to interpret it too literally. Be that as it may, when we specify the force on the parti-
cle, F(x, t), the evolution of the Wigner function is given by the quantum Liouville equa-
tion, which is

(3)

Clearly, in order for a quantum particle to behave as a classical particle, we must be
able to assign it a position and momentum, even if only approximately. For example, if
the Wigner function stays localized in phase space throughout its evolution, then the
centroid of the Wigner function1 could be interpreted at each time as the location of the
particle in phase space. 

                  

p = F(x,t) =  –∂xV(x,t)  , 
.

 

The Emergence of Classical Dynamics in a Quantum World

1 The centroid of the Wigner function is the point in phase space consisting of the mean 
values of x and p, that is (〈x〉, 〈p〉). 
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Moreover, the Liouville equation yields the following equations of motion for the
centroid:

(4)

and

(5)
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Figure 1. Potentials and
Phase-Space Trajectories
for Single-Particle Systems
The figure shows four systems
in which a single particle is 
constrained to move in a one-
dimensional potential. The four
systems are (a) a harmonic
oscillator, (b) a double well,
(c) a driven harmonic oscillator,
and (d) a driven double well, also
known as a Duffing oscillator.
As the potentials increase in
complexity from (a) to (d), so do
the phase-space trajectories.
In (c) and (d), the potential is
time dependent, oscillating back
and forth between the solid 
and dashed curves during 
each period. In (d), the force is
nonlinear, and the trajectory 
covers increasingly more of 
the phase space as time passes.

(a) Harmonic Oscillator

(b) Double Well

(c) Driven Harmonic Oscillator

(d) Duffing Oscillator
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where m is the mass of the particle. This result, referred to as Ehrenfest’s theorem,2 says
that the equations of motion for the centroid formally resemble the classical ones but
differ from classical dynamics in that the force F has been replaced with the average
value of F over the Wigner function. Suppose again that the Wigner function is sharply
peaked about 〈x〉 and 〈p〉. In that case, we can approximate 〈F(x)〉 as a Taylor series
expansion about 〈x〉:

(6)

where σx
2 is the variance of x so that σx

2 = 〈(x – 〈x〉)2〉. If the second and higher
terms in the Taylor expansion are negligible, the equations for the centroid become

(7)

and

(8)

And these equations for the centroid are identical to the equation of motion for the classi-
cal particle! If we somehow arrange to start the system with a sharply localized Wigner
function, the motion of the centroid will start out by being classical, and Equation (6) 
indicates precisely how sharply peaked the Wigner function needs to be. 

However, the Wigner function of an unobserved quantum particle rarely remains
localized even if for some reason it starts off that way. In fact, when an otherwise 
noninteracting quantum particle is subject to a nonlinear force, that is, a force with a
nonlinear dependence on x, the evolution usually causes the Wigner function to develop
a complex structure and spread out over large areas of phase space. In the sequence of
plots in Figure 2(a–d), the Wigner function is shown to spread out in phase space under
the influence of a nonlinear force. Once the Wigner function has spread out in this way,
the evolution of the centroid bears no resemblance to a classical trajectory. 

So, the key issue in understanding the quantum-to-classical transition is the 
following: Why should the Wigner function localize and stay localized thereafter? 
As stated in the introduction, this is an outcome of continuous observation 
(measurement). We therefore now turn to the theory of continuous measurements. 

Continuous Measurement

In simple terms, any process that yields a continuous stream of information may be
termed continuous observation. Because in quantum mechanics measurement creates 
an irreducible disturbance on the observed system and we do not wish to disturb the 
system unduly, the desired measurement process must yield a limited amount of infor-
mation in a finite time. Simple projective measurements, also known as von Neumann

F x F x F xx
x( ) = ( ) + ( ) +

σ
∂

2
2

2
K,
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2 According to Ehrenfest’s theorem, a quantum-mechanical wave packet obeys the equation
of motion of the corresponding classical particle when the position, momentum, and force
acting on the particle are replaced by the expectation values of these quantities.
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measurements, introduced in undergraduate quantum mechanics courses, are not ade-
quate for describing continuous measurements because they yield complete information
instantaneously. The proper description of measurements that extract information contin-
uously, however, results from a straightforward generalization of von Neumann meas-
urements (Davies 1976, Kraus 1983, Carmichael 1993). All we need to do is let the
system interact weakly with another one, such as a light beam, so that the state of the
auxiliary system should gather very little information about the main one over short
periods and thereby the system of interest should be perturbed only slightly. Only a very
small part of the information gathered by a projective measurement of the auxiliary sys-
tem then pertains to the system of interest, and a continuous limit of this measurement
process can then be taken. By the mid 1990s, this generalization of the standard meas-
urement theory was already being used to describe continuous position measurement by
laser beams. In our analysis, we use the methods developed as part of this effort. 

A simple, yet sufficiently realistic, analogy to measuring position by direct observa-
tion is measuring the position of a moving mirror by reflecting a laser beam off the mir-
ror and continuously monitoring the phase of the reflected light. As the knowledge of the
system is initially imprecise, there is a random component in the measurement record.
Classically, our knowledge of the system state may be refined to an arbitrary accuracy
over time, and the random component is thereby reduced. Quantum mechanically,
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Figure 2. Evolution of the
Wigner Function under a
Nonlinear Force
These four snapshots show
the Wigner function at differ-
ent times during the simula-
tions of the Duffing oscillator.
At t = 0, the Wigner function 
is localized around a single
point. As time passes,
however, the Wigner function
becomes increasingly 
delocalized under the nonlin-
ear potential of the Duffing
oscillator.
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however, the measurement itself disturbs the system, and our knowledge cannot 
be improved arbitrarily. As a result, the measurement record continues to have a 
random component. 

An equivalent way of understanding this random component is to note that 
the measurement process may be characterized by the rate at which information is
obtained. A more powerful measurement is one in which information is obtained at a
faster rate. Because of the Heisenberg uncertainty relation, if we obtain information
about position, we lose information about momentum. But uncertainty in momentum
turns into uncertainty in position at the very next instant. This random feedback 
guarantees that a continuous measurement will cause the system to be driven by noise:
The higher the rate at which information is obtained, the more the noise. For a position
measurement, the rate of information extraction is usually characterized by a constant,
k, that measures how fast the precision in our knowledge of position, 1/σx

2, would
increase per unit time in the absence of the accompanying disturbance. In the laser
measurement of position, k is determined by the power of the laser. The more powerful
the laser, the stronger the measurement, and the more noise introduced by the photon
collisions. 

Now we are in a position to see how and under what circumstances continuous meas-
urement transforms quantum into classical dynamics, resulting in the quantum-to-classical
transition. We can include the effects of the observation on the motion of the particle by
writing down a stochastic Liouville equation, that is, a Liouville equation with a random
component. This equation is given in the box “Conditions for Approximate Classical
Motion under Continuous Measurement” on the next page. The resulting equations of
motion for the centroid of the Wigner function are

(9)

and

(10)

where Cxp = (1/2)(〈xp〉 + 〈px〉 – 2〈x〉〈p〉) is the covariance of x and p, and ξ(t) is a
Gaussian white noise.3

We have now reached the crux of the quantum-to-classical transition. To keep the
Wigner function well localized, a strong measurement, or a large k, is needed. But
Equations (9) and (10) show that a strong measurement introduces a lot of noise. 
In classical mechanics, however, we deal with systems in which the amount of noise,
if any, is imperceptible compared with the scale of the distances traveled by the 
particle. We must therefore determine the circumstances under which continuous 
measurement will maintain sufficient localization for the classical equations to be
approximately valid without introducing a level of noise that would affect this scale 
of everyday physics. 

 

3 White noise is random noise that has constant energy per unit bandwidth at every frequency.
In reality, the actual recording of the measurement always occurs at a finite rate.  
So, effectively, the white noise gets filtered through a low-pass filter, which cuts out 
high frequencies.



118 Los Alamos Science Number 27  2002

Conditions for Approximate Classical Motion

The evolution of the Wigner function fW for a single particle subjected to a continuous measurement of position is
given by the stochastic Liouville equation:

(1)

where F is the force on the particle, ξ is a Gaussian white noise, and k is a constant characterizing the rate of infor-
mation extraction. Making a Gaussian approximation for the Wigner function, which according to numerical stud-
ies is a good approximation when localization is maintained by the measurement, the equations of motion for the
variances of x and p, σx

2 and σp
2, are 

(2)

the noise has negligible effect in these equations when the Wigner function stays Gaussian.

First, we solve these equations for the steady state and then impose on this solution the conditions required for
classical dynamics to result. In order for the Wigner function to remain sufficiently localized, the 
measurement strength k must stop the spread of the wave function at the unstable points, ∂xF > 0:*

(3)

If noise is to bring about only a negligible perturbation to the classical dynamics, it is sufficient that, at a typical
point on the trajectory, the measurement satisfy

(4)

where s is the typical value of the system’s action† in units of h. Obviously, as s becomes much larger than
this relationship is satisfied for an ever-larger range of k. At the spot where this range is 

sufficiently large, we obtain the classical limit. 

* If the nonlinearity is large on the quantum scale, then 8k needs to be much larger than 

irrespective of the sign of ∂xF. This observation does not change the argument in the body of the paper. 

† We are assuming that both [mF2/(∂xF)2]|F/p| and E |p/4F| evaluated at a typical point of the trajectory are comparable to the

action of the system, and we define that action to be hs. 
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With analytical tools alone, this problem cannot be solved. However, one can take a
semianalytical approach by accepting two important results that come from numerical
simulations: (1) Any Wigner function localizes under a sufficiently strong measurement,
and (2) under such a measurement, once the Wigner function becomes localized, it is
approximately described by a narrow Gaussian at all later times. Therefore, we assume
a Gaussian form for the Wigner function, write the equations determining how the vari-
ances and covariances change with time, and solve those equations to find their values
in a steady state. Having all these ingredients, we can then find the conditions under
which the noise terms are small and the system remains well localized (see the box on
the opposite page). Our central conclusion is that a quantum system will behave almost
classically for an ever-increasing range of measurement strengths when the action of the
system is large compared with the reduced Planck constant h. 

This concept may be understood heuristically in the following way: Because of the
uncertainty principle, the effective area where the localized Gaussian Wigner function is
nonzero can never be less than h. If this limiting area is so large compared with the scale
of the problem that it cannot be considered localized, we certainly do not expect classical
behavior. Conversely, as long as the measurement extracts information at a sufficiently
low rate to avoid squeezing the Wigner function to a smaller scale than the limiting one,
the quantum noise remains on the scale of the variances themselves. As a result, the sys-
tem behaves almost classically. 

There are systems, however, whose phase space is sufficiently small for quantum
effects to be manifest or even dominant. This is true, for example, of isolated spin 
systems with small total angular momenta. Even when they are observed and interact-
ing with the environment, these spin systems are expected to be indescribable by the
classical laws of motion. A spin coupled to other degrees of freedom such as position
is a more interesting case, especially when the position of the system would have 
followed a classical trajectory in the absence of that interaction. To what extent, if at
all, that coupling stops position from following a classical trajectory is the subject 
of ongoing research (Ghose et al. 2002).

Chaos in a Quantum System under Continuous Observation 

As an illustration of these general ideas, we consider the Duffing oscillator, a single
particle sitting in a double-well potential and driven sinusoidally—see Figure 1(d). 
We chose this nonlinear system because it has been studied in depth and it allows us to
choose parameters that produce chaotic behavior over most of the system’s phase space.
Our test will indicate whether chaotic classical motion is a good approximate descrip-
tion of this quantum system when it is under continuous observation. To diagnose the
presence of chaos, we calculate the maximal Lyapunov exponent, the most rigorous
measure of chaotic behavior,4 and compare our calculated value for the quantum system
with the classical value.

The Hamiltonian for the particle in the double-well potential is

(11)

where m, A, B, Λ, and ω are parameters that determine the size of the particle and the

 

4 The maximal Lyapunov exponent is one of a number of coefficients that describe the rates at
which nearby trajectories in phase space converge or diverge. 
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spatial extent of the phase space. The action should be large enough so that the particle
can behave almost classically, yet small enough to illustrate how tiny it needs to be
before quantum effects on the particle become dominant. Bearing this requirement in
mind, we choose a mass m = 1 picogram, a spring constant A = 0.99 piconewton per
meter, a nonlinearity A/B = 0.02 square micrometer, a peak driving force of
λ = 0.03 attonewton, and a driving frequency ω = 60 rad per second. Because of the
weakness of the nonlinearity, the distance between the two minima of the double well 
is only about 206 nanometers, and the height of the potential is only 33 nano-electron-
volts. The frequency of the driving force is 10 hertz. For these values, a measurement
strength k of 93 per square picometer per second, which corresponds to a laser power of
about 0.24 microwatt, is adequate to keep the motion classical, or the Wigner function
well localized.

To study the system numerically, we allow the particle’s Wigner function to evolve
according to the stochastic Liouville equation for approximately 50 periods of the 
driving force and then check that it remains well localized in the potential. We find,
indeed, that the width of the Wigner function in position (given by the square root of 
the position variance σx

2) is always less than 2 nanometers. Thus the position of the par-
ticle is always well resolved by the measurement as the system evolves. In addition, an
inspection of the centroid’s trajectory shows that the noise is negligible. In order to ver-
ify that the motion is, in fact, that of a classical Duffing oscillator, we perform two tests.
The first is to plot a stroboscopic map showing the particle’s motion in phase space and
then compare that map with the corresponding one of the classical Duffing oscillator
driven by a small amount of noise. The observed quantum map and the classical map are
displayed in Figure 3. 

The two stroboscopic maps are very similar and show qualitatively that the quantum
dynamics under continuous measurement exhibits chaotic behavior analogous to classi-
cal chaos. To verify this finding quantitatively, we conduct a second test and calculate
the Lyapunov exponent for both systems. As we already mentioned, trajectories that are
initially separated by a very small phase-space distance, d(0), diverge exponentially as a
function of time in chaotic systems. The Lyapunov exponent λ, which determines the
rate of this exponential increase, is defined to be 

(12)

To calculate this exponent, we first choose a single fiducial trajectory in which 
the centroid of the Wigner function starts at the phase-space point given by 
〈x〉 = – 98 nanometers and 〈p〉 = 2.6 picograms micrometers per second (pg µm/s). 
At 17 intervals along this trajectory, each separated by approximately 20 periods of
the driving force, we obtain neighboring trajectories by varying the noise realization. 
We calculate how these trajectories diverge from the initial trajectory and average the
difference over the 17 sample trajectories. We then carry out this procedure for
10 fiducial trajectories, all starting at the same initial point but differing because of
different noise realizations. Plotting the logarithm of this average divergence as a
function of time results in a line whose slope is the Lyapunov exponent. In Figure 4,
we plot the logarithm of the average divergence for both the observed quantum system
and the classical system driven with a small amount of noise. The slope of the lines
drawn through the curves gives the Lyapunov exponent, which in both cases is
5.7(2) per second. To show that the noise has a negligible effect on the dynamics,
we also calculate the Lyapunov exponent for the classical system with no noise, using
trajectories starting in a small region around the point given by x = – 98 nanometers
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and p = 2.6 pg µm/s. Those trajectories give a Lyapunov exponent of 5.6(1) per 
second, which is in agreement with the previous value. 

Now we elaborate on the problem hinted at in the introduction. If observation 
realizes the classical world, do trees in remote forests fall quantum mechanically? 
Of course, the tongue-in-cheek answer is, “who knows?” At a deeper level, however,
we note that even in a remote forest, trees continue to interact with the environment,
and through this interaction, the components of the environment (reflected light, air
molecules, and so on) acquire information about the system. According to unitarity, an
important property of quantum mechanics, information can never be destroyed. The
information that flowed into the environment must either return to its origin or stay
somewhere in the environment—the decaying sound of the falling tree must yet record
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Figure 3. Stroboscopic
Maps for the Quantum
and Classical Duffing
Oscillators
The results of the Duffing 
oscillator simulations are 
plotted as stroboscopic maps.
(a) The map for the continu-
ously observed quantum
Duffing oscillator displays the
centroids of the Wigner func-
tion at time intervals separated
by the period of the driving
force. This map is a pastiche
from several different runs with
different initial conditions, for a
total duration of 39,000 periods
of the temporal drive. (b) The
map for the classical Duffing
oscillator driven with a small
amount of noise displays the
calculated locations of parti-
cles in phase space at time
intervals separated by the
period of the driving force.
The two maps are very similar.
The quantum system under
continuous measurement
exhibits qualitatively the same
chaotic behavior as the classi-
cal system driven with a small
amount of noise. In these 
figures, ∆X = 33 nm, and
∆P = 324 pg nm/s.

(a)

(b)
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its presence faithfully, albeit perhaps only in a shaken leaf. And herein lies the key to
understanding the unobserved: If a sufficiently motivated observer were to coax the
information out of the environment, that action would become an act of continuous
measurement of the current happenings even though actually performed in the future.
But since the current state of affairs can’t be influenced by what anyone does in the
future, the behavior of the system at present cannot contradict anything that such a 
classical record could possibly postdict. 

If the motion is not observed, no one knows which of the possible paths the object
took, but the rest of the universe does record the path, which could, therefore, be consid-
ered as classical as any (Gell-Mann and Hartle 1993). All that happens when there is no
observer is that our knowledge of the motion of the object is the result of averaging 
over all the possible trajectories. In that case, we are forced to describe the state of the
system as being given by a probability distribution in phase space since we no longer
know exactly where the system is as it evolves. This observation is, however, just as true
for a (noisy) classical system as it is for a quantum system.

The Connection to the Theory of Decoherence

We can now explain how the analysis presented here relates to a standard approach 
to the quantum-to-classical transition often referred to as decoherence. The procedure
employed in decoherence theory is to examine the behavior of the quantum system 
coupled to the environment by averaging over everything that happens to the environ-
ment. This procedure is equivalent to averaging over all the possible trajectories that 
the particle might have taken, as explained above. Thus decoherence gives the evolution
of the probability density of the system when no one knows the actual trajectory. 
The relevant theoretical tools for understanding this process were first developed and
applied in the 1950s and 1960s (Redfield 1957, Feynman and Vernon 1963), but more
recent work (Hepp 1972, Zurek 1981, 1982, Caldeira and Leggett 1981, 1983a, 1983b,
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Figure 4. Lyapunov
Exponents for the
Quantum and Classical
Duffing Oscillators
In order to calculate the
Lyapunov exponents, λ, for 
(a) a continuously observed
quantum Duffing oscillator 
and (b) a classical Duffing
oscillator driven with a small
amount of noise, we plot
against time the logarithm of
the average separation of 
trajectories that begin very
close together. The parameters
defining the oscillator—the
continuous-measurement
strength in the quantum 
system and the noise in the 
classical system—are detailed
on pages 119-–120  of this 
article. The slope of the line
drawn through the curves
gives the Lyapunov exponent,
which in both cases is
λ = 0.57(2). Also in both cases,
∆0 = 33 nm.

(a)

(b)
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Joos and Zeh 1985) was targeted at condensed-matter systems and a broader under-
standing of quantum measurement and quantum-classical correspondence. It was found
that averaging over the environment or over the equivalent, unobserved, noisy classical
system gives the same evolution (Habib et al. 1998). In this classical counterpart, differ-
ent realizations of noise give rise to slightly different trajectories, and in a chaotic sys-
tem, these trajectories diverge exponentially fast. As a result, probability distributions
obtained by averaging over the noise tend to spread out very fast, and our knowledge of
the system state is correspondingly reduced. In other words, discarding the information
that is contained in the environment or, equivalently, the measurement record, as averag-
ing over these data implies, leads to a rapid loss of information about the system. This
increasing loss of information, characterized by a quantity called entropy, can then be
used to study the phenomenon of chaos with varying degrees of rigor. 

Averaging over the environment to produce classical probability distributions was,
however, not completely satisfactory. Not only does this averaging procedure not allow
us to calculate trajectory-based quantities, but it also restricts our predictions to those
derivable by knowing only the probability densities at various times. But classical
physics is much more powerful than that—it can predict the outcome of many 
“if ... then” scenarios. If I randomly throw a ball in some direction, the probability 
of it landing in any direction around me is the same, but if you see the ball north of
me, you can predict with pretty good certainty that it won’t land south of me. In the
classical world, such correlations are numerous and varied, and the measurement
approach we have taken here completes our understanding of the quantum-to-classical
transition by treating all correlations on an equal footing. It is easy to see, however,
that if the continuous measurement approach has to get all the correlations right, it
must per force get the decoherence of probability densities right!

The realization that continuous measurement was the key to understanding the 
quantum-to-classical transition has emerged only in the last decade. First introduced 
in a paper by Spiller and Ralph (1994), this idea was then mentioned again by Martin
Schlautmann and Robert Graham (1995). Subsequently, the idea was developed in a col-
lection of papers (Schack et al. 1995, Brun et al. 1996, Percival and Strunz 1998, Strunz
and Percival 1998). However, the scientific community was slow to pick up on this
work, possibly because the authors used a stochastic model referred to as quantum state
diffusion, which may have obscured somewhat the measurement interpretation. In 2000,
we published the results presented in this article, namely, analytic inequalities that deter-
mine when classical motion will be achieved for a general single-particle system, and
showed that the correct Lyapunov exponent emerges (Bhattacharya et al. 2000). For this
purpose, we used continuous position measurement, which is ever present in the every-
day world and therefore the most natural one to consider. This accumulation of work
now provides strong evidence that continuous observation supplies a natural and satis-
factory explanation for the emergence of classical motion, including classical chaos,
from quantum mechanics. In addition, such an analysis also makes clear that the specific
measurement model is not important. Any environmental interaction that provides suffi-
cient information about the location of the system in phase space will induce the transi-
tion in macroscopic systems. Recently, Andrew Scott and Gerard Milburn (2001) have
analyzed the case of continuous joint measurement of position and momentum and of
momentum alone, and they verified that classical dynamics emerges in the same way as
described in Bhattacharya et al. (2000). �
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How can we  control quantum systems 
without disturbing them? 

Quantum Feedback Control 

The nanomechanical electrometer shown here was built in Michael Roukes’ group at Caltech.

It has a demonstrated sensitivity below a single electron charge per unit bandwidth and should

ultimately reach sensitivities of the order of parts per million. Its operation is based on the 

movement of a torsional resonator that carries a detection electrode placed in an external 

magnetic field. The gate electrode is seen on one side of the resonator.
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Ever since Niels Bohr’s first
attempt at understanding the
hydrogen atom, the fundamen-

tal cautionary lesson of quantum
mechanics has been driven home
time after time: Processes in the
microworld transpire according to
laws and principles that directly con-
tradict those governing the
macroworld of human experience.
This radical shift in understanding is
now almost a century old and has
been definitively confirmed by
numerous experiments. It might seem
likely that the strange behaviors of
quantum systems would be familiar
by now and practical devices har-
nessing those behaviors would be
commonplace. For the most part,
however, we have remained mere
spectators of the microphysical
realm, where quantum mechanics
holds sway, being forced to observe
naturally occurring phenomena rather
than being able to control and manip-
ulate them. In the coming decade,
however, this situation may be
reversed. 

Recent advances in quantum and
atomic optics and condensed matter
physics are providing tools to engi-
neer practical quantum devices and
perhaps even modestly complex 
networks of these devices. Quantum
information processing, precision
measurement, and development of
ultrasensitive sensors are driving 
the present development of quantum
technologies. If quantum technologies
are ever to achieve the complexity of
classically engineered systems such
as jet aircraft and the Internet,
a quantum analog of classical feed-
back control must be developed, since
feedback control is at the heart of the
stability and predictability underlying
complex engineered systems. 

Along these lines, recent theoreti-
cal results on error correction in 
quantum computation and on the
dynamics of open quantum systems
may be viewed as first steps in devel-
oping a theoretical formalism for
practical quantum feedback control
(see the articles “Introduction to
Quantum Error Correction” on 
page 188 and “Realizing a Noiseless
Subsystem” on page 260). Indeed,
feedback control represents a promis-
ing new approach to mitigating quan-
tum noise and decoherence in both
quantum computation and precision
measurement. If we are to apply the
concepts and methods of feedback
control theory to quantum dynamical
systems, we must not only extend
classical control concepts to new
regimes but also analyze quantum
measurement in a way that is useful
for control systems.

The Evolution of Control
Theory

Controlling natural phenomena
through macroscopic engineering goes
back thousands of years. Consider for
a moment the ingenious ways in
which early human civilizations con-
trolled irrigation. In Mesopotamia
(2000 BC), where rainfall was poor
and the Tigris and Euphrates Rivers
were the main sources of water, engi-
neers constructed an elaborate canal
system with many diversion dams (see
the drawing to the left). In that sys-
tem, the Euphrates served as a source
and the Tigris as a drain. In a similar
vein, the ancient Egyptians used water
from the Nile and thereby allowed
their civilization to flourish. On a
smaller scale, machines using feed-
back control were developed in the

Greco-Roman period, and methods for
the automatic operation of windmills
date back to the Middle Ages. 

Perhaps the best-known example
of feedback control in the industrial
era is the Watt governor, which stabi-
lizes steam engine speeds under fluc-
tuating loads. James Clerk Maxwell
provided the first dynamical analysis
of this system based on differential
equations. His work, which was 
published in 1868, founded the field
of mathematics now known as 
control theory. In the early part 
of the 20th century, the idea of self-
regulating machinery continued to be
pushed in various directions, notably
in electronic amplification. Control
concepts were further developed for
industrial, navigational, and military
applications. 

After World War II, control sys-
tems progressed to a new level of
complexity. Up until that time, feed-
back control systems had been largely
single loop, taking the feedback sig-
nal from one point and connecting the
correction signal to a different point.
Multiloop control systems and more-
sophisticated feedback techniques
emerged from progress in optimiza-
tion theory and dynamical systems
theory, as well as from the advent of
digital computers. 

After 1960, there emerged what is
often referred to as “modern” (as
opposed to “classical”) control theory
(Brogan 1990, Zhou et al. 1996),
which emphasizes optimization of
cost and performance. For the same
control goals, it is clear that not all
control strategies will be equally
effective in terms of cost and perform-
ance. Determining the best strategy
defines the problem of optimal con-
trol; however, optimal algorithms are
often unstable to variations in system 



parameters and the external environ-
ment. Theorists then turned to ensuring
performance bounds in the presence of
uncertainty. This work resulted in the
theory of “robust” control (Zhou et al.
1996). Noise in the inputs, extrinsic
disturbances in the system under con-
trol, measurement errors, and modeling
inadequacies—all can render control
systems less effective or, in some
cases, even lead to catastrophic fail-
ures. The role of robust control is to
maintain adequate stability and other
performance margins given the uncer-
tainties mentioned earlier. 

Classical Control Systems

Formally speaking, a control sys-
tem consists of a dynamical system
interacting with a controller, a device
that influences the state of the dynam-
ical system toward some desired end.
The objective may be to regulate the
flow of an industrial process, money,
energy, information, and so on. In a
“closed-loop,” or feedback, control
system, the controller uses outputs
from the dynamical system to monitor
and influence its interaction with that
dynamical system. For a linear
dynamical system, for example, such
a situation could be described by the
following equation:

(1)

where x is a vector describing the
state of the system, dW is a vector 
of Gaussian noise sources, and u is
the vector of inputs determined by 
the controller. The matrix A gives the
system’s deterministic motion, and B
and C describe, respectively, how the
noise and input vectors are coupled
into the system. A separate equation,
namely,

(2)

describes the continuous measurement

of system outputs by the controller. 
In each small time interval dt, the con-
troller obtains the measurement result
dy. That result is directly related to the
true state of the system by some linear
transformation H, but it also includes 
a Gaussian noise process V, which
serves to represent imperfections 
in the measurement. 

Examples of control systems can
be found in many applications. For
instance, servomechanisms are control
systems that use small control inputs
to produce changes in large mechani-
cal systems. In effect, the larger sys-
tems are “slaved” to the output of the
servomechanisms (for example, liquid
levels in reservoirs are controlled by
float valves). Feedback circuits are
used in ingenious ways in electronic
amplification to manipulate input and
output impedances and to improve the
linearity, distortion, and frequency
bandwidth of the output signal relative
to the input signal. 

In an “open-loop” control system,
the controller does not monitor 
the output of the dynamical system. 
A dynamical model for the system is
assumed, and control is applied with
the idea that the desired outcome will
actually be achieved. Open-loop

strategies are useful in situations in
which the system dynamics are known
precisely and vary only slowly.
Processes with long measurement
dead times are sometimes better suit-
ed to open-loop control methods than
to feedback methods. Open-loop con-
trol strategies are applied in situations
as diverse as the maximization of
returns from financial investments,
optimal determination of aircraft
flight paths, and controlled dissocia-
tion of molecules. 

Figure 1 shows how to implement
closed-loop control for a dynamical
system. One must be able to measure
some of the dynamical variables of
the system under control (the outputs)
and use them to influence some other
variables (the inputs). In other words,
given the output variables, the con-
troller implements a particular control
strategy to influence the state of the
dynamical system by appropriately
varying the inputs. Robust controllers
take into account variations in system
parameters and fluctuations from 
the external environment to produce
control strategies with guaranteed 
stability bounds. 

Control systems can involve many
different interacting physical systems

dy = Hxdt + RdV ,  

dx = Axdt + BdW + Cu  ,  
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Feedback 
controller

Dynamical 
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External perturbations,
parametric drifts, and uncertainties

Figure 1. Classical Feedback Control
The classical dynamical system to be controlled has a set of input variables, which
are processed by the system dynamics into a set of output variables. Some fraction
of the set of input and output variables (possibly different for each case) is available
for hookup to the controller. The controller has to perform in the presence of exter-
nal fluctuationsthat is, uncertainties and drifts in the parameters describing the
dynamical systemand measurement errors.



with a large number of sequential,
parallel, and nested control loops that
are both open and closed. For exam-
ple, closed- and open-loop strategies
can be combined as in the fast closed-
loop systems used to stabilize the
slower, inherently unstable open-loop
dynamics of modern fighter aircraft. 

Developing Control in
Quantum Systems

The general picture of control sys-
tems outlined in the previous section
appears to be extendable to quantum
systems. Certainly, open-loop control
problems are conceptually straightfor-
ward in the quantum context. One
begins with the time evolution opera-
tor of the quantum system—the
Schrödinger equation for the wave
function, the Liouville equation for the
density matrix, or more complicated
dynamical evolution equations for 
the density matrix characterizing a
system coupled to an environment. 
A theory for time-dependent variations
in the evolution operator is then devel-
oped in such a way that the wave 
function or the density operator at
some time is close to some target

value. This target value does not have
to be unique, nor in fact is the time
evolution to that value unique. The
approach just outlined applies equally
well to classical probabilistic evolu-
tions: Although quantum and classical
systems are dynamically distinct, the
principles for open-loop control are in
fact very similar. 

Controlling chemical reactions by
laser-produced electromagnetic fields
that are time dependent is a well-
known open-loop quantum control
problem. In the frequency-resolved
approach to control, the quantum
interference between different evolu-
tionary paths is being manipulated; in
the time-resolved approach, the
dynamics of wave packets produced
by ultrafast laser pulses leads to con-
trol. For some specific control of the
chemical reactions, one can optimize
the temporal and spectral structure of
those laser pulses (Shi et al. 1988). 

The fundamental differences
between classical and quantum systems
become real issues, however, in the
field of closed-loop control. Quantum
systems can have two distinct types 
of feedback control: directly and indi-
rectly coupled quantum feedback (see
Figure 2). As illustrated in Figure 2(a),

in a system with directly coupled quan-
tum feedback, a quantum variable of
the system is coupled to the quantum
controller, and a quantum input path
from the controller goes directly back
to the quantum system. When the
quantum feedback is indirect, as shown
in Figure 2(b), the quantum dynamical
system under control is an observed
system. It therefore generates a classi-
cal output, also known as the measure-
ment record, which the controller may
analyze to provide a best estimate of
the original quantum state of the sys-
tem. The controller then feeds back 
a classical signal to vary parameters 
in the quantum evolution operator 
in accord with the chosen control 
strategy. Hybrid couplings using both
direct and indirect quantum feedback
channels are easy to envisage: The
channel from the system output to 
the controller input may be directly
coupled whereas the channel from the
controller output to the system input
may be coupled indirectly through a
classical path. 

In both classical and quantum 
contexts, the main goal of closed-loop
control is to enhance system perform-
ance in the presence of noise from
both the environment and the 
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Figure 2. Directly and Indirectly Coupled Quantum Feedback
(a) Both the dynamical system and the controller are quantum systems coupled through a unitary interaction. A quantum 
variable is coupled to the quantum controller, and a quantum input path from the controller goes directly back to the quantum
system. (b) A quantum dynamical system can be viewed as having two sets of inputs, one relating to the variation in the classi-
cal parameters describing the Hamiltonian and the other representing fully quantum inputs. Similarly, the output channel can 
be divided into a quantum and a classical channel. The classical channel is, in fact, a piece of the quantum channel that 
has become classical after observation. The controller analyzes the classical record to form an estimate of the dynamical 
system’s state and uses this information to implement the appropriate control.
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uncertainty in the system parameters.
To limit the effects of noise, the 
controller must perform an irre-
versible operation. Noise generates a
large set of undesirable evolutions,
and the controller’s task is to map this
large set to a much smaller one of
more desirable evolutions. Mapping
from the larger to the smaller set is by
definition irreversible. In other words,
noise is a source of entropy for 
the system. To control the system, the
controller must extract the entropy
from the system under control and put
it somewhere else. The controller
must therefore have enough degrees
of freedom to respond conditionally
upon the noise realization. In indirect
quantum feedback control, the meas-
urement process, coupled with the
conditional response of the controller,
is the source of entropy reduction. 
In direct quantum feedback control,
the evolution of the system is fully
unitary, or quantum mechanical. The
quantum controller provides a large
Hilbert space of quantum mechanical
states. That is precisely where the
entropy generated by the noise may
be put (or where the history of the
effect of the noise on the system may
be stored). The quantum controller
then reacts conditionally to this 
quantum record, keeping the entropy
of the quantum dynamical system 
low, while the entropy of the storage
location grows continually. 

Inherent Noise Generation in
Quantum Feedback Control

Unlike classical systems, quantum
systems may be easily disturbed when
information about them is extracted.
Measurement disturbs a quantum 
system through the following intrinsic
property of quantum mechanics:
Obtaining accurate knowledge about
one observable of a quantum system
necessarily limits the information
about an observable conjugate to the

first. For example, particle position
and momentum are conjugate observ-
ables, and the uncertainties inherent 
in the knowledge of both are codified
by the famous Heisenberg uncertainty
relation. If the chosen feedback-
control strategy involves measure-
ment, one must take into account 
the effects of the measurement on 
the evolution of the quantum system.
A generally applicable model for
including those effects is that of a
continuous quantum measurement.
This model was developed for quan-
tum optics (Carmichael 1993), a field
in which such measurements have
been realized experimentally, and it
was also derived in the mathematical
physics literature with the help of
more abstract reasoning (Barchielli
1993). In this volume, the model of a
continuous quantum measurement is
presented in the article “The
Emergence of Classical Dynamics in a
Quantum World” on page 110. 

Quantum measurements may 
introduce unwanted noise in three
more-or-less distinct ways. First, one
may measure an observable conjugate
to the real variable of interest and
thereby introduce more uncertainty in
the latter variable. More generally,
one may attempt to obtain information
inconsistent with the state under con-
trol. For example, to preserve a state
that is the superposition of two posi-
tion states, position measurements
must be avoided because they will
destroy the superposition. Thus, in
quantum mechanics, the type of 
measurement chosen must be consis-
tent with the control objectives. This
condition is unnecessary in classical
feedback control. Second, if trying 
to control the values of observables
(Doherty et al. 2000), one must con-
sider that the time evolutions of differ-
ent observables necessarily affect each
other over time. Observables whose
values are uncertain at one time will
cause other observables (perhaps more
accurately known) to become uncer-

tain at a later time. For example,
a very accurate measurement of the
particle position at one time intro-
duces uncertainty into the value of the
particle momentum. Because the value
of momentum determines the position
of the particle at a later time,
the momentum uncertainty makes the
future position of the particle more
uncertain, hence introducing noise into
the quantity that is being measured.
This mechanism for introducing noise
is usually referred to as the back
action of a quantum measurement.

The third kind of noise involves 
the randomness of the measurement
results. Because the state of the
observed system after a measurement
depends upon the outcome of the
measurement, the more the result fluc-
tuates, the more noise there is in the
evolution of the system. For classical
measurements, fluctuations in meas-
urement results cannot be any more
than the entropy of the system before
measurement; that is, the measurement
does not introduce any additional
noise into the system. In quantum
mechanics, however, even if the sys-
tem state is known precisely, one can
still make measurements that change
the state in a random way, thereby
actually injecting noise into the sys-
tem. This observation is particularly
relevant when the overall state of the
system, rather than a specific observ-
able, is being controlled. The situation
is further complicated by the fact that,
for certain classes of measurements,
there is actually a tradeoff between the
noise injected by the measurement and
the information gained by the observer
(Doherty et al. 2001). As a result,
designing measurement strategies is
far from being a trivial activity.

Strategies for Quantum
Feedback Control

The differences between classical
and quantum measurements profoundly
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affect the design of feedback control
algorithms. A classical controller
extracts as much information from 
the system as possible. In quantum
control, irreducible disturbances are
inherent to any measurement, and
therefore the measurement strategy
becomes a significant part of the feed-
back algorithm. For example, just as
the inputs to the system change with
time, the measurements too may need
to be varied with time so that the best
control should be achieved. 

Adaptive measurement, or altering
the measurement as it proceeds, was
first introduced by Howard Wiseman
(1995), not for control but for 
accuracy. The result was a more 
accurate measurement of some aspect
of the quantum state. Nevertheless,
this approach has a unique bearing on
quantum feedback control algorithms.
Knowing that quantum measurements
can disturb the state being measured,
one may want to start a continuous
measurement process by measuring in
a way that is not necessarily optimal
but is sufficiently weak to cause 
minimal disturbance to the aspect 
of interest. As the measurement pro-
ceeds, one uses the continuously
obtained information about the state
to make the measurement increasingly
close to optimal. 

For example, consider measuring
the oscillation amplitude of a 
harmonic oscillator when the phase 
of the oscillation is unknown but 
the oscillator is known to be in an
amplitude-squeezed state; that is, the
uncertainty in amplitude or energy is
much smaller than the uncertainty in
phase, the conjugate variable (see
Figure 3). In this case, an accurate
measurement of amplitude is given
by a measurement of position at the
moment when the particle is at its
maximum spatial extent, or maxi-
mum distance from x = 0. On the
other hand, at the moment when the
particle has the most momentum (at
position x = 0), the ideal quantity to

measure is momentum. Thus, for a
continuous measurement of the oscil-
lation amplitude, a linear combina-
tion of position and momentum
should be measured and the relative
weighting of those two variables
should be allowed to oscillate in
time. However, without knowing 
the mean phase of oscillation, one
cannot know which variable should
have the most weighting in the meas-
urement at what time. Using an 
adaptive measurement procedure,
one can start by assuming the oscilla-
tor to have a particular phase and
then adjust the relative weights of
position and momentum to more
desirable values as information about
the phase is obtained. 

Applications of Quantum
Control

Atomic optics is one field in which
it should be possible to test quantum

feedback control in the near future. 
It has already been demonstrated that
a single atom can be trapped inside 
an ultralow-loss optical cavity (mirror
reflectivity is R = 0.9999984 in 
experiments at Caltech) in the strong-
coupling quantum regime (Mabuchi et
al. 1999). Figure 4 illustrates the
experimental setup used at Caltech.
The strong coupling occurs between
the atom and the radiation field in 
the cavity and is proportional to the
induced atomic dipole moment and
the single-photon cavity field.
Continuous measurements and real-
time feedback could be used to cool
such an atom to the “ground” state of
the quantized mechanical potential
produced by several photons in the
cavity. The average number of pho-
tons circulating inside such a cavity
can be kept very low (from 1 to
10 photons) if one uses a weak driv-
ing laser that barely balances the slow
rate at which individual photons leak
out. If the cavity mode volume is 
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Figure 3. “Squeezed” States for a Harmonic Oscillator
Squeezing may be illustrated by considering phase-space plots of a Gaussian wave
function. For a standard Gaussian state, the uncertainties in the x- and p-direction
are equal, and the uncertainty ellipse takes the shape of a circle, provided appropri-
ate position and momentum scalings are made. When states are “squeezed,” the area
of the uncertainty ellipse remains constant, but the ellipse is rotated and squeezed
as shown. Squeezing momentum, for example, means reducing the uncertainty in
momentum. The constant energy surface is the dashed circle, and the position on 
the circle can be specified by the angle. Squeezing phase and energy again refers 
to changes in shape of the uncertainty ellipse for the wave function.
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sufficiently small, just a few photons
can give rise to dipole (alternating-
current Stark shift) forces that are
strong enough to bind an atom near a
local maximum of the optical field
distribution. At the same time, the
atomic motion can be monitored in
real time by phase-sensitive measure-
ments of the light leaking out of the
cavity. To a degree determined by the
fidelity of these phase measurements,
the information gained can be used
continually to adjust the strength of
the driving laser (and hence the depth
of the optical potential) in a manner
that tends to remove kinetic energy
from the motion of the atomic center
of mass. 

In order to perform such a task in
real time, however, it is essential to
develop approximate techniques for
continuously estimating the state of
the atomic motion. Approximations
are needed because integrating a sto-
chastic conditioned-evolution equation
to obtain a continuous estimate of the
density matrix is far too complex a
task to be performed in real time.
While this experiment remains to be
carried out, we have developed an
approximate estimation algorithm1

and used it in combination with an
experimentally realizable feedback
algorithm (see Figure 5). 

Feedback cooling ideas can also be
applied to condensed-matter systems.
Some of our recent calculations pre-
dict that feedback control can be used
to cool a nanoresonator below the lim-
its set by refrigeration. This method
would reduce thermal fluctuations to
approximately the quantum energy
level spacing of the resonator. These
findings are important because
nanoscale devices are interesting from
a more fundamental perspective than
merely sensing and actuation applica-
tions. Provided they can be cooled to
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Figure 5. Simulating a Feedback Algorithm to Cool Atomic Motion in
an Optical Cavity
In this simulated experiment, the light forms an effective sinusoidal potential for the
atom, and the controller switches this potential between a high and a low value
(separated by some ∆V) to cool the atomic motion. In this simulation, the feedback
is turned on at t = 2, and the expected value of the atomic motion energy is plotted
here as a function of time for four different values of ∆V. Although these results are
still preliminary, they indicate that the effectiveness of the feedback algorithm is
highly dependent on ∆V.

Figure 4. Quantum Feedback in a Cavity Quantum Electrodynamics
Application
The dynamics between the atom and the photon field in the cavity can be modified
by continuous measurement of the light transmitted through the cavity (which bears
information about the evolving system state) and by continuous adjustment of the
amplitude/phase of the driving laser in a manner that depends on the measurement
results. Control objectives of fundamental interest include active cooling of the
motion of an individual atom, feedback-stabilized quantum state synthesis, and
active focusing of atomic beams for applications such as direct-write lithography.

Controller

System
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Intensity
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1 This algorithm is described in a yet unpub-
lished paper by Salman Habib, Kurt Jacobs,
Hideo Mabuchi, and Daniel Steck.



sufficiently low temperatures, low-
loss nanomechanical resonators would
be excellent candidates for the first
observation of quantum dynamics in
mechanical mesoscopic systems. Yet,
as mentioned above, in order achieve
this goal, we must reduce thermal
fluctuations to approximately the
quantum energy level spacing of the
resonator, a task which requires tem-
peratures in the range of millikelvins. 

To cool the position coordinate of
the nanoresonator, one needs a suit-
able scheme for continuous position
measurement. One practical method
of performing a continuous measure-
ment of a nanoresonator’s position is
to use a single-electron transistor
(SET)—see Figure 6. To make the
measurement, one locates the res-
onator next to the central island of 
the SET. When the resonator is
charged and the SET is biased so that
current flows through it, changes in
the resonator’s position modify the
energy of the central island, which
produces changes in the SET current.
The current therefore provides a con-
tinuous measurement of the position
of the resonator, a requirement for
implementing a linear feedback cool-
ing algorithm. A feedback force can
be applied to the resonator by varying
the voltage on a “feedback electrode,”
which is capacitively coupled to the
resonator (see Figure 6). The applied
voltage is adjusted so as to damp the
amplitude of oscillation. 

Experiments on nanomechanical
oscillators observed with SETs cur-
rently start at temperatures near
100 millikelvins. These oscillators
have fundamental frequencies f0 on 
the order of 1 to 100 megahertz. As a
concrete example, consider a practical
oscillator with f0 = 10 megahertz,
a length of 2 micrometers, and the
other two dimensions on the order of
100 nanometers. The effective mass 
of such an oscillator is roughly
10–19 kilograms. An achievable quality
factor, Q, is about 104. In order to

observe discrete quantum passage
from one oscillator energy level to
another, the thermal energy should be
on the order of the level spacing, that
is, kBT ~ hf0, which corresponds to an
effective temperature T = .24 mil-
likelvin. Habib, Jacobs, Asa Hopkins,
and Keith Schwab have shown that
feedback cooling applied to this 
system at an initial temperature 
T = 100 millikelvins can yield a final
temperature of T = 0.35 millikelvin. 
At this temperature, the aggregate
occupation number lies between zero,
the ground state, and one, the first
excited state of the nanomechanical
resonator. In other words, the system
is cold enough to allow observation 
of quantum “jumps.” Although our
calculations are based on certain ideal-
ized assumptions, those assumptions
are close enough to reality that 
experimentalists can hope to achieve
similar results. 

Another, seemingly paradoxical,
application of quantum feedback 
control techniques might be in sup-

pressing quantum dynamical effects
such as tunneling. A classical memory
device can be viewed as a two-state
system with the two states separated
by a finite energy barrier. At low tem-
peratures, there is a finite probability
of coherent or incoherent tunneling
from one minimum to the other.
Tunneling generates random memory
errors, but continuous measurement,
coupled with feedback, can suppress
it. One such scheme is described and
demonstrated in Andrew Doherty et
al. (2000). The Hamiltonian for the
double well is taken to be

(3)

where x and p are dimensionless posi-
tion and momentum. Choosing A = 2
and B = 1/9 puts the minima of the
wells at ±3 and gives a barrier height
of approximately 13.5. The controller
is allowed to continuously observe the
position of the particle and to apply a

H p Ax Bx= − +
1

2
2 2 4 ,
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Figure 6. Cooling a Nanomechanical Resonator
This schematic diagram illustrates a concept for cooling a nanomechanical res-
onator to millikelvin temperatures, at which we can possibly observe quantum
dynamics. An SET measures the position of the resonator, and a feedback mecha-
nism damps (cools) the resonator’s motion. The resonator, which is charged by 
the voltage source Vgate acts as the SET gate electrode. The resonator is also
capacitively coupled to the SET island (red) and feedback electrode. As it moves
back and forth relative to the SET island, the current Isd flowing through the SET
changes. Information about the changing current is used by the feedback circuitry
to charge the feedback electrode. A force is generated that damps the resonator’s
oscillations.



linear force in addition to the “double-
well” potential already present. The
continuous observation is described by
the equation

(4)

where dq is the measurement result 
in the time interval dt and k is a 
constant characterizing the accuracy, or
strength, of the measurement. 
The system is also driven by a thermal
heat bath in the high-temperature limit.
The effect of that bath is, in fact, the
same as that of a continuous quantum
measurement of position that ignores the
measurement result. When the bath is
described in this way, it is the strength of
the fictitious measurement that gives the
rate of thermal heating, and we will
denote this constant by β. 

Integrating a stochastic master equa-
tion gives the observer’s state of knowl-

edge as a result of the continuous meas-
urement. However, since this is a differ-
ential equation for the density matrix of
the single particle, it is numerically
expensive to integrate. For practical pur-
poses, one requires a simplified means
for calculating a state estimate. To
achieve this goal, we note that, as a
result of the continuous observation,
even though the dynamics are nonlinear,
the density matrix remains approximate-
ly Gaussian. When a Gaussian approxi-
mation is used, the stochastic master
equation reduces to a set of five equa-
tions (for all the moments of x and p up
to quadratic order), and so it provides us
with a practical method for obtaining a
continuous state estimate. In practice,
this Gaussian estimator can be shown to
work quite well; that is, mean values
from the approximate estimator agree
very well with mean values derived from
exact numerical solutions of the stochas-

tic master equation—see Figure 7(a). 
In addition to a state estimation

procedure, we also require a feedback
algorithm. If the system were linear,
one could apply the optimal tech-
niques of modern control theory to
find a feedback algorithm. Because
attempting an optimal control solution
for the full nonlinear problem is com-
putationally intractable, the idea is to
linearize the system dynamics around
the present estimate of the state 
with the further assumption that the
probability density, conditioned on 
the measurement record, remains
Gaussian. As long as position meas-
urements are sufficiently strong, this
last condition is satisfied. The impor-
tance of this condition is twofold:
Having a Gaussian approximation
does not only mean that a small num-
ber of moments (five) are needed to
describe the distribution but also that
the quantum propagator is very close
to the classical propagator at each
time step (for exactly Gaussian states,
the two are identical), and hence 
techniques borrowed from classical
control have an excellent chance of
working. The control can fail if the
measurement is too weak to maintain
a localized Gaussian distribution or 
if it is too strong. In the latter case,
the state is Gaussian, but the measure-
ment noise is too large.

The Gaussian state estimate is now
used to set the value of the feedback
term in the Hamiltonian (the sign and
the magnitude of the coefficient of the
linear feedback term in the potential).
By choosing appropriate strengths for
the measurement and the feedback
strength, one can show that the feed-
back scheme is effective in controlling
whether the particle is in the desired
minimum—see Figure 7(b). For this
plot, the measurement strength is 
k = 0.3, and the thermal heating rate is
d〈E〉/dt = β = 0.1. 

This scheme has limitations arising
from unwanted heating due to the
measurement. Although some of the

dq x dt
dV

k
= +    ,

8
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Figure 7. Particle in a Double Well Controlled by an Estimation-
Feedback Scheme
(a) Shown here, as a function of time, are the target position (blue line), the ‘true”
mean position (red line) obtained with the stochastic master equation (in which the
measurement strength k equals 0.3 and the thermal heating rate β equals 0.1), and
the position obtained with the Gaussian estimator (gray line). (b) The control
strength (size of applied force) is shown as a function of time.



heating derives directly from having 
to keep the state close to Gaussian, a
more general limitation also con-
tributes to heating: The measurement
must be sufficiently strong to provide
enough information for control to be
effective. Developing new estimation
and feedback schemes that can reduce
the measurement-induced heating rate
is an important area for future research.

Outlook for the Future

Most likely, ideas in quantum feed-
back control will first be tested in
condensed matter physics and in
quantum and atomic optics.
Experiments in atomic optics have
already furnished the cleanest tests
and demonstrations of quantum
mechanics in the last several decades.
These include violations of the Bell
inequalities, quantum teleportation,
quantum state tomography, quantum
cryptography, and single-atom inter-
ference. The ability to compare exper-
imental results with precise theoretical
benchmarks is a hallmark of these
tests. As these experiments become
increasingly sophisticated and com-
plex, one can envisage a passage from
“toy” demonstrations to real applica-
tions such as feedback control. The
more strongly coupled systems of
condensed matter physics are less
amenable to accurate theoretical pre-
diction. Nevertheless, experiments are
becoming comparable in quality to
early atomic optics experiments,
and the time is ripe for active interac-
tion between these two fields:
Theoretical development in quantum
optics, such as continuous measure-
ment and quantum control, can be
taken over to condensed matter con-
texts, most notably in nanotechnology.
As the size of the smallest structures
that can be fabricated by lithographic
techniques decreases, the need for
quantum mechanics becomes
inevitable. Since lithography is the

only way we know to create very
complex systems at reasonable cost,
it follows that a fundamental and 
predictive understanding of quantum
dynamics applicable to these systems
(whether coherent or incoherent) will
be required. It is also clear that, for
these systems to be designable and to
function reliably in an engineering
sense, further development of quan-
tum control theory will be necessary.

From a “more algorithmic” per-
spective, the Holy Grail is the devel-
opment of optimal and robust control
algorithms that are generally applica-
ble. So far, apart from the trivial case
in which the system dynamics are 
linear and the measurement strategy is
considered fixed (Doherty and Jacobs
1999), no such optimal algorithms
have been found for quantum feed-
back control. In classical control 
theory, optimal and robust control
algorithms exist for linear systems,
but only very few for nonlinear sys-
tems despite the best effort of control
theorists in the past few decades.
Nonlinear classical optimal control is
a very difficult problem indeed, and
probably intractable in most cases.
Systematic numerical search algo-
rithms for optimal strategies exist, but
these also become intractable for sys-
tems of reasonable size. Because the
dynamics of noisy and measured
quantum systems is inherently nonlin-
ear, the quantum control problem may
also be intractable (Doherty et al.
2000). However, in quantum dynam-
ics, nonlinearity is of a restricted 
kind, and the possibility of obtaining
general analytic results providing
optimal and robust algorithms for the

feedback control of quantum systems
remains an open problem. �
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Atom-Trap BECs
A new laboratory for studying superfluidity, quantum

fluctuations, and other quantum phenomena

Eddy M. E. Timmermans
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In October 2001, the field of ultracold-atom physics was honored with the
Nobel Prize in physics. It was awarded to Carl Wieman, Eric Cornell, and
Wolfgang Ketterle for the creation and study of dilute-gas Bose-Einstein

condensates (BECs). Never before had the BEC phase transition, predicted by
Einstein more than 70 years earlier, been observed in such a clear and unam-
biguous realization. By confining neutral atoms in a tiny magnetic trap and
cooling them to temperatures only nanokelvins above absolute zero, the Nobel
laureates and their colleagues had slowed the atoms down to the point at which
the individual wave functions begin to overlap and many thousands of atoms
suddenly occupy exactly the same single-particle quantum state. Coaxing boson-
ic atoms (atoms with integer spin) to condense into this coherent quantum state
had been the “holy grail” of the cold-atom physics community for almost two
decades. The quest had led to the development of extraordinarily clever trapping
and cooling techniques, including Zeeman slowing, magneto-optical trapping,
evaporative cooling, and time-orbital potential trapping. The achievement of the
first atomic BECs in the summer of 1995 has led to a remarkable sequence of
advances that continues unabated. 

At first, this article first provides a historical perspective on atom-trap BECs
and then focuses on the exciting experiments that are driving the field of 
cold-atom physics. Our historical overview stresses the long-range coherent
properties of BECs and the role BEC physics has played in the explication of
superfluidity in liquid helium. In discussing current work, we have selected a
line of research and a series of experiments that illustrate the enormous flexibili-
ty of the new atom-trap BEC technologies. These experiments were carried out
at the Massachusetts Institute of Technology (MIT), Yale University, and Max
Planck Institute of Physics in Munich, Germany. Their achievements suggest
intriguing prospects for future work in ultracold atomic physics in general and
at Los Alamos in particular. In fact, several Los Alamos scientists have already
contributed to the development of this field on an individual basis, and we
briefly mention those in the concluding section.

The opening figure, produced by Ketterle’s group at MIT, is taken from the
paper (Andrews et al. 1997) that provides the starting point for our discussion 
of the new avenues introduced by these advances. The figure is a direct optical
image of two ballistically expanding BECs showing a spatial interference 
pattern on a macroscopic scale. This pattern is a stunning confirmation that 
the phase coherence in atom-trap BECs is as complete as in optical lasers,
and therefore these condensates can be manipulated and used as atomic lasers,
that is, as coherent sources of atomic-matter waves. This is a unique prospect
for phase-coherent matter. 
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After we introduce and resolve an intriguing puzzle regarding the origin of the interfer-
ence pattern, we turn to a BEC experiment by the group of Mark Kasevich at Yale. This
experiment is interesting from a theoretical point of view because the BECs display both
laserlike and superfluid aspects of long-range phase coherence. The former is usually
reserved for a nonequilibrium system of noninteracting photons, whereas the latter is usu-
ally reserved for an equilibrium or near-equilibrium fluid of strongly interacting helium
atoms. Specifically, adjacent weakly linked BECs display laserlike spatial interference in
a manner that implies Josephson-junction-like phase dynamics between the BECs (Orzel
et al. 2001).

The purpose of the Yale experiment was not to probe coherent behavior but to induce
and observe quantum fluctuations in the conjugate variables of long-range phase versus
localized atom number. The group loaded the BECs into an optical lattice in which the
potential barriers separating the lattice wells serve as junctions. By gradually freezing
out the motion of the bosons through the junctions and observing the subsequent loss of
phase coherence, the scientists were able to infer an increased certainty in the number 
of atoms in each well, that is, the formation of number-squeezed states. A few months
later, the group of Theodore Hänsch in Munich, Germany (Greiner et al. 2002),
conducted a beautiful experiment that took this process to its limit. They observed 
the sudden disappearance of all phase coherence in a BEC trapped in an optical-lattice
potential, a direct demonstration of the Mott-insulator phase transition in which a 
partly coherent state becomes an all-localized state and the tunneling between wells
completely stops. This transition is somewhat analogous to the well-known Mott 
transition from a conducting phase to an insulating phase of electrons in a crystal lattice.

The success of these experiments is due in part to the fact that dilute-gas BECs, with
their long coherence lengths and slow evolution times, are readily manipulated and
observed with high-precision atomic and optical technologies. Atom-trap BECs have
become a remarkably flexible and transparent system for exploring complex many-body
phenomena. 

In introducing a theoretical view of these developments, we use a “pedestrian”
approach to the condensate description, drawing the comparison to single-particle quan-
tum mechanics wherever possible. This approach will make some of the more subtle
points of many-body condensate physics accessible to the nonspecialist. We end with an
assessment of the atom-trap BEC system for investigating fundamental issues in many-
body physics. 

Atom-Trap BECs—A Realization of Einstein’s Condensate

Einstein was the first to understand the quantum concept of particle indistinguishabil-
ity and to realize some of its far-reaching implications. He made the following predic-
tion: When a gas of noninteracting bosons, or particles with integer spin, is cooled
below a critical temperature, a significant fraction of the particles will suddenly find
themselves in the same lowest-energy single-particle state. (This is an example of a
many-body system that is “quantum degenerate,” a term signifying that the system’s
behavior is dominated by quantum statistics—that is, the statistics of indistinguishable
particles, either Bose statistics for particles with integer spin or Fermi statistics for parti-
cles with half-integer spin—as opposed to the Boltzmann statistics of classical systems.)
In the limit of zero temperature, all the noninteracting bosons would occupy exactly that
same ground state yielding a many-body state that we now call a BEC. 

Similarly, in the ground state of a dilute gas of bosons, almost all particles find them-
selves in the same single-particle quantum state. Much attention has been devoted over
the years to the study of such dilute-gas BECs because they are believed to provide a
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model for studying superfluidity in a more direct way. The term “superfluidity” denotes
a host of low-temperature fluid phenomena such as inviscid, or dissipationless, flow and
quantized vortices, all of which contradict our intuition for classical fluid behavior.
Interestingly, all condensed-matter superfluids such as helium-4, its fermion cousin 
helium-3, and the superconductors consist of strongly interacting particles and do not
resemble dilute-gas BECs in most of their particulars. However, we believe that their
superfluid nature arises from the property of long-range phase coherence, which they
share with the dilute-gas BECs. The concept of long-range phase coherence will be 
discussed later. For now, simply stated, it implies the existence of a complex-valued,
single-particle-like wave that characterizes the entire many-body system. 

In the case of a dilute BEC, the single-particle-like quantum wave (a wave function
that depends on the position of a single particle) can be identified with the wave func-
tion of the single-particle state that is occupied, on average, by more than one boson and
is also known as the multiply occupied single-particle state.1 Because almost all parti-
cles occupy that single-particle state at zero temperature, the dilute BEC exhibits almost
complete coherence. The dilute BEC is then the simplest superfluid system. In contrast,
the precise description of the quantum wave coherence of a strongly interacting 
superfluid is not straightforward. Although it is tempting, for instance, to associate 
the fraction of the fluid that is superfluid (and can flow without dissipation) with the
fraction of the atoms that occupy the lowest-energy single-particle state, that assumption
turns out to be wrong. At zero temperature, the helium-3 fluid is all superfluid, whereas
only 10 percent of the atoms occupy the zero-momentum state. 

Questions regarding the strong interaction effects and the role of quantum fluctua-
tions in reducing the phase coherence and superfluid fraction remain of interest. Against
this backdrop, it may be worth noting that the optical-lattice BEC experiments described
below give unprecedented control of such quantum fluctuations. 

The current atom-trap BECs are dilute in a sense that we will specify shortly. Their
experimental achievement represented the first unambiguous realization of dilute BECs.
They are made from neutral alkali atoms (sodium, rubidium, lithium, and more recently,
hydrogen) that are trapped and cooled with a combination of optical and magnetic fields.
(See “Experiments on Cold Trapped Atoms” on page 168 for a description of trapping
and cooling processes.) The alkali atoms chosen consist of an even number of fermions
(protons, neutrons, and electrons) giving a total spin that has an integer value. These
“composite” bosons exhibit the same type of “gregarious” behavior that Einstein predict-
ed for noncomposite bosons. Indeed, the experimenters knew that a BEC had formed
when they saw evidence for a sudden increase in the number of atoms occupying the
same single-particle ground state at the center of the trap (see Figure 1). This “condensa-
tion” is quite different from the familiar liquid-vapor phase transition seen in water, for
example. The particle wave functions overlap perfectly, and the behavior of this degener-
ate Bose-Einstein gas, or condensate, becomes exquisitely sensitive to the interparticle
interactions even if the system is dilute. The spatial extent of the multiply occupied 
single-particle wave function is determined by the competition of the effective interparticle
repulsion and the trapping potential that confines the atoms. In present-day experiments,
the size of the BEC can be as large as one-tenth of a millimeter. In other words, the 
multiply occupied single-atom wave function describing the BEC is macroscopic.

Although Bose-Einstein condensation had never been directly observed before 1995,
this phase transition served as a textbook example in statistical mechanics (Huang 1987)
because it is one of the few phase transitions that can be described analytically. 
As Einstein himself stressed (Pais 1979), this remarkable transition follows solely from
the quantum-mechanical concept of particle indistinguishability, unlike the usual phase
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transitions, which result from a competition between interactions and entropy (disorder). 
The neutral atom-trap systems are extremely dilute. Like billiard balls, they feel 

each other’s presence only when they are separated by a distance equal to or less than 
a particular length. This length, known as the scattering length a, takes on different 
values for different atomic species—or even for the same species in different atomic
states—but for most of the trapped neutral alkali atoms, its value is positive (reflecting
an effectively repulsive force between the particles), and it tends to be about 1 nanome-
ter. We characterize the “diluteness” of the gas by visualizing the atoms as hard spheres
of radius a and computing the fraction of the total volume occupied by the spheres,
(4π/3)na3, also called the “packing fraction.” In the current atom-trap BECs, the packing
fraction ranges from one part in a million to one part in a billion. 

At that diluteness, almost all atoms are phase coherent in the zero-temperature Bose-
condensed state, somewhat in the manner that the photons produced through stimulated
emission into a single mode of an optical-laser cavity are phase coherent. That is, all
particles behave according to the same coherent wave function, and the particles can
exhibit macroscopic interference. Contrary to the optical-laser system, the BECs consist
of mutually interacting particles that are conserved (that is, the total number of atoms
remains constant) and that can relax to an equilibrium state, in which case the long-
range phase coherence gives rise to superfluid behavior. Indeed, in the last three years,
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Figure 1. The First 
Atom-Trap BECs
Some of the first signatures of
Bose-Einstein condensation
were obtained in a dilute gas of
trapped rubidium atoms in the
groups of Wieman and Cornell.
Shown in (a) are the shadow
(absorption) images of the den-
sity profile of the trapped atoms
and in (a′) the cross sections of
the local density. Both data
sequences were obtained with
varying values of the cutoff
energy used in the evaporative
cooling, the final stage in cool-
ing the trapped atoms. In evapo-
rative cooling, atoms of energy
above the cutoff, indicated in
megahertz, were removed from
the trap. As the cutoff energy
decreases, the final temperature
to which the system equilibrates
is lowered. Below a critical
value, a sharp peak appears in
the density profile, a signal that
Bose-Einstein condensation has
occurred. As the gas was con-
tained in an asymmetric (cigar-
shaped) trap, the shape
observed in (a) provides an
independent signature. The left-
most frame shows a spherically
symmetric thermal cloud; the
middle frame shows an asym-
metric density spike correspon-
ding to the condensate sur-
rounded by a thermal cloud; and
the rightmost frame shows the
final density spike in which most
of the atoms have Bose-con-
densed. (b) These shadow
images from Ketterle’s group
show a BEC in sodium. The
number of trapped atoms is
greater than that in (a) by about
a factor of 100. The density of
the condensate grows with
decreasing temperature from left
to right. (b′) These density plots
show cuts through an atomic
cloud as the condensate devel-
ops. Note that the spatial extent
of the condensate is about
0.1 mm. The size reflects the
macroscopic nature of the sys-
tem. It increases with the scat-
tering length defined in the text.
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[Figures 1(a) and 1(a′) are reprinted with permission from Anderson et al. Science 269, page 199. Copyright 1995 
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the American Physical Society.]



experiments have definitively shown that the atom-trap BECs exhibit the defining behav-
ior of a superfluid such as sustained superflow (or dissipationless flow), zero resistance to
an object moving through the condensate, and quantized vortices. 

Most BEC experiments are carried out with no more than a hundred thousand to a few
million atoms. The difficulties encountered in increasing the particle number currently
limits the prospects for practical applications somewhat. On the other hand, the atom-trap
BEC technology has become fairly routine—more than 20 experimental groups have
achieved BECs by now. The extraordinary flexibilities offered by the available atomic,
molecular, and optical technologies, as well as by the imaging techniques, provide the
BECs with advantages that are unique in low-temperature physics. 

Aspects of BEC Dynamics

We will explore a bit further the two quantum concepts that are central in understand-
ing BECs and the sense in which superfluid behavior of the BECs represents the behavior
seen or inferred in liquid helium and other systems, including nuclei, subnuclear systems
produced in accelerators, and neutron stars. Those two central concepts are particle indis-
tinguishability and coherent wave behavior. 

Particle Indistinguishability. It was Einstein who realized that the statistics Bose
devised to understand the Planck spectrum of black-body radiation involved counting the
number of ways in which particles (in that case, photons) can be distributed over single-
particle states (called “subcells” in Einstein’s thermodynamic treatment). The Bose
counting presumed the particles to have a distinctly nonclassical quality. Whereas the tra-
jectories of classical particles can always be followed so that the particles can be distin-
guished from each other, Bose counting assumed particles to be fundamentally indistin-
guishable. Einstein extended the counting technique for photons, whose particle number
is not conserved, to a gas of conserved noninteracting particles, and he showed that the
indistinguishability implies a sudden increase in the number of particles occupying the
specific subcell/single-particle state of lowest energy: the BEC phase transition. 

Coherent Wave Behavior. A BEC’s coherent wave behavior follows directly from the
time evolution of the multiply occupied single-particle state. In quantum mechanics, the
one-particle system evolves according to Schrödinger’s wave equation. As a consequence,
the single-particle system can exhibit the type of interference seen in Young’s classic 
double-slit experiment, which proved that light was a wave phenomenon (see the box
“The Double-Slit Experiment”). In the quantum interpretation, light and atoms exhibit
both particle and wave behavior, and the interference results from the uncertainty in
knowing which of two possible trajectories the particle or the photon followed in reach-
ing the detector. (Put another way, the particle can simultaneously follow two different
paths to reach the screen; that is, it can exist in a superposition of probability amplitudes
A1 and A2, one for each path. The probability of finding the particle at the detector is
given by the square of the amplitude A1 + A22, which exhibits interference that is due to
the A1A2

* + A1
*A2 contribution.) Depending on the location at which the particles hit the

detector, the probability amplitudes for each path add up constructively or destructively,
respectively increasing or decreasing the probability. 

As explained in the box, the observation of an interference pattern, even with light,
can represent an experimental challenge. Many particles (or photons) must pass through
the slits for the pattern to be seen, and if the particles (photons) occupy different single-
particle states, the interference washes out, and the probability becomes a single blob
without the spatial oscillations that signal interference. In the BEC case, as in an optical-
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In 1802, Young devised and performed the double-slit
experiment, which disproved Newton’s particle theory of
light and established unequivocally that light is a wave
phenomenon. In that experiment, two holes punched in a
screen allowed incident light to pass through. The light
intensity reaching a second screen located behind the first
was then recorded, and under the right conditions, it was
possible to observe interference fringes (an intensity 
pattern that oscillates in space), giving unmistakable proof
of the wave nature of light. 

To understand the origin of the interference fringes, we
imagine the light to be perfectly monochromatic (charac-
terized by a single wavelength or frequency) and to be
emitted in a direction perpendicular to the screens from a
point source an infinite distance away (see Figure A). In
that case, the incident light consists of plane waves with
wave fronts parallel to the screen. The light reaching a
specific position on the second screen has traveled in a
straight line from either hole, and the difference in dis-
tance traveled determines the difference in phase of both
light rays reaching the screen. If the difference in distance
traveled by each ray is equal to an integer number of
wavelengths, the waves originating from each hole are in
phase, which means that their instantaneous electric-field
vectors point in the same direction. The total electric field,
which is the vector sum of both fields, then has a magni-
tude equal to the sum of the magnitudes. In contrast, if the
difference in distance is equal to an odd number of half-
wavelengths, the waves are out of phase, meaning that the
electric-field vectors of the rays that passed through the
different slits point in opposite directions and that the
magnitude of their vector sum is less than that of the light
from a single hole. In fact, they can completely cancel
each other out, giving a vanishing intensity. In the first
case, the waves are said to add up constructively, and 
the intensity, which is proportional to the square of the
magnitude of the total electric-field vector, appears bright;
in the latter case, the waves add up destructively, and the
intensity appears dim. Varying the position on the second
screen causes the difference in distance from both holes to
vary and the intensity to go through a series of maxima
and minima, corresponding to, respectively, constructive
and destructive interference. 

In a realistic two-slit experiment, the incident waves are
not perfectly monochromatic, and the source of light is
not a perfect point source. Whether the interference pat-
tern can be distinguished in the recorded intensity actually
depends on the details of the experiment, such as the 
distance between the slits. Loosely speaking, optical
coherence refers to the ability of the light to exhibit such
interference. Mathematically, the contrast is specified by

measurements of the highest (Imax) and lowest (Imin)
intensities. The visibility of the fringes, defined as the
ratio (Imax – Imin)/(Imax + Imin), provides a measure of
light coherence. For laser light, the slits can be as far apart
as the width of the laser beam and still produce an inter-
ference pattern with a visibility near unity. In the quantum
description of the laser, nearly all photons are said to be in
the same state. In contrast, thermal light contains photons
in different states, each of which would give a different
interference pattern with interference fringes at different
positions. The recorded pattern is a sum of all the interfer-
ence patterns, and the fringes at different positions can
wash each other out. 
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The Double-Slit Experiment—A Quantitative Measure of Coherence 
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DPlane wave
Screen with
two slits
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distribution

Figure A. Diagram of Double-Slit Experiment
A plane wave incident on the first screen passes through 
the two slits and is stopped by the second screen. The light
intensity at a specific position on the second screen depends
on the difference in the path lengths traveled by the light
waves emanating from the two slits to that position. If the
path length difference is equal to an odd number of half
wavelengths, the spot appears dim (low intensity); if it is
equal to an integer number of wavelengths, the spot appears
bright (high intensity). The path length difference varies along
the straight line shown in the plane of the second screen.
Along this line, the intensity passes through positions of con-
structive and destructive interference, giving an oscillatory
intensity variation, called interference fringes.



laser system, most particles occupy the same state so that the many-particle system
exhibits the interference pattern of the single-particle system. We call this property
“coherent wave behavior.” As mentioned previously, it is the essential property that 
the weakly interacting BEC has in common with the strongly interacting superfluids 
such as helium. 

Classical or Mean-Field Description of BEC Dynamics. Current atom-trap BECs
have packing fractions of about one part in a million to one part in a billion. At that
diluteness, almost all the neutral atoms of a near-equilibrium system at near zero tem-
perature occupy the same single-particle state. The many-body system can therefore be
approximated by an N-particle wave function consisting of a product of single-particle
wave functions:

(1)  

where the single-particle χ-function is a complex-valued quantity:

(2)

In 1927, shortly after the discovery of quantum mechanics, Erwin Madelung pointed
out that the behavior of the single-particle wave function was analogous to that of a
fluid in which |χ(r;t)|2 plays the role of the single-particle density and (h/m)∇θ is asso-
ciated with a velocity. Similarly, in BEC physics, where the single-particle wave func-
tion is multiply occupied, the phase of the single-particle wave function, θ, plays a cru-
cial role in the theory as the single phase that gives rise to all the coherent wave phe-
nomena discussed below. In particular, its gradient describes the velocity associated with
the dissipationless flow observed in superfluid systems. 

The product state in Equation (1) is a special case of the Hartree-Fock Ansatz for the
many-body wave function of identical particles, and it evolves according to a Hartree-
Fock equation of motion. If the boson particles of mass m experience an external trap-
ping potential V, so that the potential energy of a single boson at position r is V(r), and
if the bosons interact with each other through an interaction potential v, so that a pair of
bosons located respectively at r and r′ experience an additional energy v(r – r′), then
the Hartree-Fock equation takes on the following form:

(3)

Because the interaction between neutral atoms in a BEC has a much shorter range than
the length scales on which the atom-trap BECs vary, we can approximate the interpar-
ticle potential by an effective contact interaction, v (r – r′) → λδ (r – r′), where the
interaction strength λ is proportional to the scattering length a: λ = (4πh2/m)a. In
addition, the number of particles is large enough to allow approximating (N – 1) by N.
We then introduce the condensate field Φ as Φ = N1/2χ so that |Φ|2 represents the 
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particle density, as it does in the single-particle case. With these quantities, the
Hartree equation for atom-trap BECs takes on the form of the celebrated Gross-
Pitaevski equation:

(4)

This equation, first derived by Pitaevski to treat superfluid vortices in a full quan-
tum description, has been very popular in many fields of physics (and even biology).
In spite of its simplicity, it has solutions that exhibit crucial nonlinear physics phe-
nomena such as solitary waves, self-focusing, and self-trapping. As a result, the atom-
trap BECs can also be regarded as new laboratories for studying nonlinear dynamics. 

Describing the physics of BECs by means of the Gross-Pitaevski equation—
Equation (4)—is known as “making the mean-field approximation” or “working in 
the classical approximation.” The term “classical” may appear out of place because
Equation (4) implies that matter has wavelike behavior, and it implicitly contains the
Planck constant. Nevertheless, this equation also follows from the Lagrange equations
of the corresponding classical field theory without any quantization condition. The
Gross-Pitaevski equation gives a classical description of BECs in the same sense that
Maxwell’s equations provide a classical description of photon dynamics. Perhaps most
significantly, the Gross-Pitaevski equation provides the simplest possible description
of a superfluid system, and the mean-field approximation (which for BECs is equiva-
lent to assuming a product wave-function solution) captures many of the essential 
features of superfluidity. For instance, the mean-field treatment predicts a dispersion
relation, or excitation spectrum, that satisfies Landau’s criterion for dissipationless
flow (a criterion to which we refer below). On the other hand, the Gross-Pitaevski
equation is certainly not as general as the phenomenon of superfluidity. Although
some long-range behavior of the helium superfluids and superconductors can be quali-
tatively understood when this equation is invoked, the atom-trap BECs are the only
systems quantitatively described by it. Moreover, the classical description also breaks
down for BECs, for example, when quantum fluctuations become important, as they
do in the experiments described at the end of this article. Those experiments involve
number-squeezed states and the Mott transition from a coherent, or superfluid, state 
to a localized state. 

The Coherent Wave Nature of Superfluidity

The term “superfluidity” was first applied to a very low temperature phase of liquid
helium. In 1938, Peter Kapitza and, independently, John Allan and Donald Misener
discovered that below a critical temperature of 2.2 kelvins, liquid helium-4 flows
without measurable dissipation through capillary tubes. It seemed that this low-tem-
perature phase of helium-4, called HeII, is not governed by the usual laws of classical
fluid dynamics. Subsequent experiments uncovered other counterintuitive phenomena
in HeII, including the fountain effect, perfect heat conductivity, and persistent circular
flow. Superfluidity is now the name for both this collection of phenomena and the
state of matter responsible for them. 

The superfluid state was so unusual and its mechanism so difficult to discern in the
relatively inaccessible medium of a strongly interacting fluid that its origin remained a
matter of continuing controversy for more than two decades.
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Is HeII like a BEC? Noting that helium-3, the fermion cousin of helium-4, did not
undergo a phase transition to a superfluid at similar temperatures, Fritz London 
suggested in 1938 that the HeII transition is intimately related to the boson nature of 
the helium-4 atoms. He further proposed that the HeII superfluid is, in a generalized
sense, a BEC. Of course, being a strongly interacting fluid, the helium system cannot
be characterized by the assumption that all atoms occupy the same single-particle 
state. Nevertheless, London (1938) argued that “some of the general features of the
degenerate ideal Bose-Einstein gas remain intact, at least qualitatively, for this liquid.”
He also offered support for his thesis by calculating the BEC critical temperature for
the helium density, which came out to 3.13 kelvins, remarkably close to the HeII
transition temperature of 2.12 kelvins, measured in 1933. Although the latter agreement
is largely fortuitous, London’s words sound almost prophetic in retrospect: He hinted
that the superflow in HeII was a macroscopic quantum current brought about by
changes in the boundary conditions. 

The Two-Fluid Description of HeII. Following a different track, Lev Landau and,
independently, Laszlo Tisza (who was, in fact, partly motivated by London’s views)
proposed the two-fluid model of HeII, in which one component is an inviscid, irrota-
tional superfluid that does not carry entropy. This model explained the observed
effects and also correctly predicted new superfluid phenomena, such as second sound.
Landau used very general assumptions to derive a criterion for superfluidity and an
expression for the critical velocity above which dissipation would set in. The critical-
velocity calculation, although ultimately incorrect, captured the main features of 
persistent flow, and a generalized form of the Landau criterion is still of great use in
explaining critical velocities for superfluidity. Nicolai Nicolaevich Bogoliubov
showed that a weakly interacting BEC satisfies Landau’s criterion for superfluidity,
but Landau continually resisted the notion that the superfluid should be associated
with a BEC. 

The BEC Description Revisited. Finally, Oliver Penrose (1951) and then 
Penrose and Lars Onsager (1956) proposed the currently accepted point of view that
superfluidity is a macroscopic manifestation of coherent (hence, single-particle-like)
quantum-wave behavior. This description does not contradict the two-fluid model 
but supersedes it in the sense that the coherent quantum-wave behavior includes 
phenomena, such as quantized vortices and Josephson effects, which find no 
explanation in the two-fluid model.

As previously mentioned, the single-particle quantum wave behavior, which is 
compatible with and can be described as fluidlike behavior, had been pointed out by
Madelung in 1927. In his pioneering paper of 1951, Penrose derived the equation for
the off-diagonal density matrix of the many-body helium fluid and then drew on
Madelung’s analysis of the single-particle wave function to associate the long-range
part of that off-diagonal density matrix with the superfluid component of the two-fluid
model. In essence, Penrose identified quantum wave coherence as the essential feature
responsible for both superfluidity and the BEC-like behavior conjectured by London. 

As the understanding grew that superfluidity was an outcome of quantum wave
coherence, the intimate connection between superfluidity and superconductivity was
realized. We now understand both phenomena to be caused by coherent quantum-wave
behavior, that is, many identical particles or units whose behavior can be described by
the same single-particle wave function. For a superfluid, the single unit that exhibits
the quantum wave behavior is a boson particle; for a superconductor, it is a pair of
fermions. Much as we regard a superfluid as a BEC of boson particles, we can regard a
superconductor as a BEC of fermion pairs. Not surprisingly, therefore, the fields of
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superfluidity and superconductivity share a number of phenomena that stem directly
from their coherent wave nature. Two of these coherent phenomena, Josephson junc-
tions and quantized vortices, have recently been studied in atom-trap BECs and are
briefly described next. 

Josephson Junctions. In the 1960s, the physics of superconducting Josephson junc-
tions provided evidence for the coherent wave nature of superconductors. The Josephson
junction is a weak link, such as a thin insulator, connecting two indistinguishable super-
fluids or superconductors—see Figures 2(a) and 2(b). One manifestation of the
Josephson “effect” is an alternating current flowing through the weak link when both
sides of the junction are kept at different chemical potentials by, for instance, the intro-
duction of a potential difference over the junction. 

In an ordinary electronic circuit, the potential difference sets up a direct current (dc),
which flows from the region of high chemical potential to that of low chemical poten-
tial. In contrast, in a coherent-wave superfluid system, the rate for bosons or fermion
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Figure 2. Josephson
Junctions and the
Josephson Effect for
BECs
The diagrams show (a) two
superconductors separated by
a thin barrier and (b) the over-
lap of the coherent single-
particle wave functions that
describe each superconductor
in the neighborhood of the
junction. In 1962, Brian
Josephson showed that, under
certain conditions, quantum
mechanical tunneling of elec-
tron pairs could occur through
the barrier. If the two wave
functions differ by a phase, a
direct current of electron pairs
will flow through the barrier, or
junction. If a voltage is placed
across the junction, the phase
difference varies periodically in
time, causing an alternating
current to flow across the junc-
tion. (c) A neutral-atom BEC
trapped in a double-well poten-
tial behaves like a supercon-
ducting Josephson junction.
The potential barrier created by
a laser beam acts like the insu-
lating barrier between the
superconductors. (d) The BEC
junction is predicted to exhibit
the Josephson effect. For
instance, a sudden change in
the chemical potential of one of
the BECs would initiate an
oscillation in the number of
particles in each well. The fre-
quency of the oscillation is
determined by the difference of
the chemical potentials.
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pairs to tunnel through the potential barrier of the junction depends sinusoidally on the
phase difference between the single-particle-like wave function on either side of the
junction. That phase difference increases linearly with time in the presence of a poten-
tial difference, giving an alternating current that oscillates at the frequency correspon-
ding to the chemical potential difference. 

In the original condensed-matter Josephson junctions, the superfluids were supercon-
ductors. In such cases, the bosons tunneling through the junction are electron pairs, and
the current is a charge current, which is easily and accurately measured. In helium
superfluids, on the other hand, the weak link is difficult to make, and the observation of
a weak neutral current presents a nontrivial experimental challenge, which was only
recently met (Packard 1998). 

The direct analogue of the Josephson junction in atom traps is an atomic BEC
trapped in a double-well potential—see Figures 2(c) and 2(d). The challenge of observ-
ing the Josephson effect in this system, however, is similar to the problem encountered
in observing Josephson oscillations in helium superfluids: How can one measure small-
amplitude oscillations of neutral-particle populations? In the last section, we show how
atom-trap BEC technology made possible a unique solution to the problem of observing
Josephson phase dynamics. 

Quantized Vortices. Quantized vortices are another coherent wave phenomenon
unique to superfluids and superconductors. In classical fluids, vortices are long-lived
flow patterns in which the particles whirl around an axis, all with the same angular
momentum. In a superfluid, a superflow that similarly whirls around an axis can be set
up by a characteristic variation of the coherent wave function: the phase of the wave
function varies cylindrically around the vortex axis. For the wave function to be single-
valued, it must return to its initial value after a full rotation around the axis; that is, its
phase must have changed by 2π or by 2πn, where n represents an integer number. This
constraint implies that the angular momentum of superfluid vortices is quantized with
allowed values equal to nh—see Figure 3(a). 

Quantized vortices in helium were observed by William Vinen and by George Rayfield
and Frederick Reif, and their observations provided further support for the coherent wave
behavior of the helium superfluid. In atom-trap BECs, the long-lived metastable vortex
structures were created and studied in laboratories at the Joint Institute for Laboratory
Astrophysics (JILA) at Boulder, Colorado, in the groups of Wieman and Cornell; at the
École Normale Supérieure in Paris, in the group of Jean Dalibard; at MIT in the group of
Ketterle; and at Oxford University, England, in the group of Chris Foot—see Figure 3(b).
A direct measurement of the angular momentum of the vortices, by Dalibard’s group,
experimentally confirmed the quantization of BEC vortices. In addition, at MIT, rapid
advances in BEC technology led to the creation of vortex lattices (also called Abrikosov
lattices) in atom-trap BECs with up to 160 vortices and to the detailed observation at both
MIT and JILA of the intricate dynamics of vortex formation and decay. 

BEC Interference—A Demonstration of Wave Coherence

In optical systems, long-range phase coherence is easily demonstrated through the
double-slit experiment. In fact, the sharpness of the interference fringes produced in that
experiment is used as the standard measure of optical coherence. In contrast, condensed-
matter systems give mostly indirect signatures of wave coherence—quantized vortices
and Josephson effects—although observations and applications of temporal interference
in superconductors do exist (for example, in superconducting quantum interference
devices, or SQUIDS). 
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Thus, when Ketterle’s group at MIT observed the spectacular interference pattern
shown in the opening illustration, they brought an unusual message: BECs are superflu-
ids that can manifest their long-range phase coherence in an optical-laser-like manner of
spatial interference. Michael Andrews and collaborators later (1997) argued that the
interfering BEC experiment demonstrated the first atom laser (albeit in a form that, as of
yet, is not necessarily useful to applications). Their demonstration suggests that the
simultaneous appearance of superfluid and laserlike aspects of long-range phase coher-
ence might one day yield particularly potent applications of BECs. 

The MIT Experiment. Figure 4 outlines the experimental procedure used by the
MIT group. First, an off-resonant laser beam is passed through the center of an atom
trap, which effectively creates a double-well potential. The atoms are then cooled and
Bose-condensed into two BECs, one on either side of the potential barrier—see
Figure 5(a). Because the height of the barrier significantly exceeds the chemical poten-
tial of either BEC, the two BECs are independent. 

When the trapping potential was switched off, the two BECs expanded freely and
started overlapping spatially. Using two laser pulses in succession, the MIT group
imaged the local density of atoms in a 100-micrometer-thick slice within the region of
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Figure 3. Quantized
Vortices
(a) In a superfluid, the phase of
the wave function for a vortex
must increase by 2π on each
revolution, which implies that
the angular momentum of the
vortex must be an integer multi-
ple of hh, or nhh. (b) Several exper-
imental groups have created
and imaged quantized vortices
in atom traps. The transverse
absorption images (Madison et
al. 2000) are of a condensate of
about 105 rubidium-87 atoms at
a temperature below 80 nK. This
condensate has been stirred
with a laser beam at various
rotational frequencies. Above a
critical rotational frequency,
vortex filaments appear. Plots 1
and 2 show the variation in opti-
cal thickness along the horizon-
tal axes of the clouds imaged in
plots 3 and 4, respectively.
The cloud stirred at 145 Hz
(shown in plot 3) contains no
vortex filament, whereas the
cloud stirred at 152 Hz (shown
in plot 4) contains one vortex 
filament. In plots 5, 6, and 7,
the condensate was stirred at
rotational frequencies of 169,
163, and 168 Hz, respectively.
(Reproduced with permission from 

The American Physical Society.)
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overlap. The first laser pulse pumped the BEC atoms in the selected slice from state |1〉
to a different hyperfine state |2〉. The second laser, tuned near a resonant transition from
state |2〉 to state |3〉 and pointing more or less perpendicular to the plane of the slice,
imaged the density of atoms in state |2〉. The image showed a highly visible, regular pat-
tern of clearly separated interference fringes of macroscopic size (40 micrometers)—see
Figure 5(b). The visibility of the fringes (defined in the box “The Double-Slit
Experiment”) ranged from 20 to 40 percent. By characterizing their optics, the experi-
mentalists inferred that the actual visibility of the density fringes ranged from 50 to
100 percent. The density fringes are defined as (ρmax – ρmin)/(ρ max + ρmin), where ρmax
and ρmin denote the maximum and minimum densities if observed with an ideal imaging
technique. The high visibility of the observed fringes indicates that the entire many-
body system behaves as a coherent wave. 

What Produces the Interference Fringes? Unquestionably (by definition, in fact),
macroscopic interference fringes indicate coherence in the usual optical sense. But how
the observed interference fringes relate to the coherence of the expanding BECs is a
matter of considerable subtlety, as will be explained. Under the experimental conditions
of independent BECs, the single-particle density matrix, as we show below, does not
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Figure 4. Procedure for
Creating BEC Interference 
In the BEC interference experi-
ment conducted at MIT
(Andrews et al. 1997), sodium
atoms were contained in a
cigar-shaped trap (stage 1).
In the second stage, a laser
beam focused on the center of
the initial trap repelled the
atoms from that region, creating
an overall atomic potential that
has a double-well shape. In the
third stage, the atoms were
cooled below the critical tem-
perature TC of the BEC phase
transition. The height of the
potential barrier separating 
the wells greatly exceeded the
thermal energy kBTC (where kB
denotes the Boltzmann con-
stant) and the chemical poten-
tials of the BECs that are
formed in the left (L) and right
(R) wells. (The wave functions
for the two BECs are labeled χL
and χR.) Under these condi-
tions, the two BECs are inde-
pendent of each other in the
sense that they cannot “know”
each other’s phase. When the
trapping potential is suddenly
removed in stage 4, both BECs
expand and then overlap.
Images of the atomic density of
the overlapping BECs show
macroscopic interference
fringes of high visibility.

Stage 1:  Sodium atoms are contained in a single-well trapping potential.

Stage 2:  A laser beam repels the atoms and creates a trapping potential with a double-well shape.

Stage 3:  The atoms are cooled below the critical temperature of the phase transition to BECs.

Stage 4:  The trapping potential is suddenly removed, and the BECs expand and overlap.

R

R



exhibit interference. Why then does the recorded image show fringes? The resolution, as
we show for a special case, depends on the fact that the image does not record the sin-
gle-particle density. 

The Case of BECs with Definite Particle Number. As reported by Andrews et al.
(1997), the potential barrier separating the two BECs was five times higher than the
energy corresponding to the critical temperature for the BEC phase transition and 
50 times higher than the chemical potentials of the BECs in each well. Under those con-
ditions, the state of the double-well BEC system is indistinguishable from that of two
BECs that were condensed in separate traps at an infinite distance from each other and
then brought together. In principle, we can therefore know exactly how many particles
occupy each of the two BECs. That is, the system is in a number state. The single-parti-
cle density of this double-well number state ρ1(N) does not exhibit interference, a point
we now demonstrate for a simplified double-well number state with only two particles. 

We call the single-atom state centered in the right well χR(r) and the single-atom
state centered in the left well χL(r), where r denotes the center-of-mass position of the
trapped atom. Thus, a two-particle number state with one atom in each well is represent-
ed by a wave function Ψ(N):
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Figure 5. Sodium Atom
BECs and Their Interference 
(a) Phase contrast images of a
single Bose condensate (upper
panel) and double Bose conden-
sates were taken in the magnetic
trap of the MIT group. An argon
ion laser that was focused into
the center of the trap created a
double-well potential. Changes
from 7 to 43 mW in the power of
the laser-light sheet caused the
distance between the two con-
densates to vary. (b) The interfer-
ence pattern of two expanding
condensates was observed after
a 40-ms time of flight for two 
different powers of the argon-
laser-light sheet (raw-data
images). The periods of the
fringes were 20 and 15 µm;
the laser powers were 3 and 
5 mW; and the maximum absorp-
tions were 90% and 50%,
respectively, for the left and right
images. The fields of view were
1.1 mm horizontally by 0.5 mm
vertically. The horizontal widths
were compressed fourfold, a con-
dition that enhances the effect 
of the fringe curvature. For the
determination of the fringe 
spacing, the dark central fringe
on the left was excluded.
(Reprinted with permission from Andrews et

al. Science 275, pages 638 and 639.

Copyright 1997 American Association for the

Advancement of Science.) 



(5)

When the external potential is switched off, the two-particle wave function, to a close
approximation, remains of the form in Equation (5), with χL and χR evolving as freely
expanding single-particle wave functions that are mutually orthogonal. The correspon-
ding single-particle density ρ1(N) at a given time t,

(6)

is equal to an incoherent average of the densities of the individual expanding single-
particle wave functions. Generally, the single-particle densities expand smoothly—a
free-particle Gaussian wave function (for instance, if the χ-wave-functions start out as
ground-state functions of harmonic oscillator potentials) remains Gaussian—so that
ρ1(N) (r; t) does not exhibit spatial oscillations. 

The Case of a Mutually Coherent State of the Double-Well System. In contrast,
had a single-well system containing both particles in its center-of-mass ground state
been split adiabatically, the resulting double-well system would be in a mutually coher-
ent state. This particular mutually coherent state would be a product of single-particle
wave functions of the type 2–1/2[χL (r; t) + exp(iα) χR (r; t)], where α denotes the phase

difference that evolved between the right and left wave functions during the adiabatic
splitting of the wells. This two-particle, mutually coherent wave function takes the form 
where the label C stands for coherent. The mean field or classical description—see
Equation (1)—of the double-well BEC assumes such mutual coherence. The single-
particle density of the mutually coherent, freely expanding two-particle system reads

where c.c. is the complex conjugate of the previous term. Far from the potential minima
of the initial wells, the amplitudes of the expanding wave functions vary slowly in
space, so that we can approximate those amplitudes as χR(r; t) ≈ χ exp[iθR(r; t)] and
χL(r; t) ≈ χ exp[iθL (r; t)], and the single-particle density in the far region becomes

(9)

Thus, in addition to the densities of the expanding single-particle wave functions,
ρ1(C)(r;t) also contains an α-dependent term—namely, the interference fringes—that
varies sinusoidally with the difference of the position-dependent phases of the overlap-
ping χR and χL functions. The expression in Equation (8) is quite general; the single-
particle density of an N-particle BEC distributed over two wells in a mutually coherent
state takes on the form of Equation (9) in the far region.
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Heuristic Derivation of the Interference Fringe Pattern. What is the geometry and
spacing of the interference fringes that would be produced by this mutually coherent state?
We offer a heuristic derivation of the phase of a freely expanding single-particle state.
Classically, a particle that has traveled a distance r in a time t has a velocity v = r/t. In the
spirit of the Madelung description, we associate the gradient of the phase θ with mv/h, and
we find dθ/dr = (mr/ht), so that θ = (m/2h)(r2/t) + C, where C denotes a constant, inde-
pendent of r. Now we suppose that the left and right BECs are sufficiently alike so that we
can assume that their phases in the expansion evolve with the same constant C. In that
case, the difference between the phases of the amplitudes χR and χL evaluated at a vector
distance r from the center of the right well and rL from the center of the left well is 

θR – θL = (m/2ht)[r2 – r2
L ]2 = – (m/2ht)[2d ⋅ r + d2]  , (10)

where the vector distance d separates the centers of the potential wells and r2 – r2
L = 

–2r ⋅ d – d2 (see Figure 6). The high-density regions of the interference fringes are
planes perpendicular to d at a regular spacing of λ = ht/(md). The measured density pat-
tern for the density in Equation (9) is

(11)

and the value of α can be inferred from the positions of the interference fringe planes. 
A more careful derivation of the phases θR(L) gives corrections, but the above expres-

sions are essentially correct in the regions imaged in the interfering BEC experiment.
The experimental images do indeed reveal planar interference fringes, separated by a
distance λ = ht/(md).

Resolving the Origin of the Interference. The experiment clearly indicated coher-
ence, and the image agrees with the single-particle density of the mutually coherent
double-well system. However, the experimental system was prepared not in a mutually
coherent state, but in a number state analogous to that described by Equation (5). In that
state, given that the single-particle density ρ1(N) in Equation (6) does not exhibit inter-
ference, why does the recorded image show fringes like those from the coherent single-
particle density in Equation (11). The resolution of this apparent puzzle lies in the fact
that the image does not record the single-particle density. Instead, the experiment probes
the multiparticle density. Specifically, we cannot interpret the image of the N-particle
system as N independent measurements of the single-particle density. But we can
assume that the measurement captures the N-body system in a “likely” configuration;
that is, the observation of a particle at r1, another at r2, and so on, indicates that the state
of the system corresponding to the N-particle density ρN(r1, r2, …, rN) = |Ψ (r1, r2, …,
rN)|2 has a relatively high probability. 

We use the special case of two particles in a double-well potential to illustrate the dif-
ference in probing the N-particle rather than the single-particle density. We assume the
two-particle double-well system is prepared in the number state of Equation (5). We
detect the particles at a time t during a  period that is short on the time scale on which the
single-particle wave functions χL and χR expand. The probability that one particle is
recorded at r1 and the other at r2 is proportional to the two-particle number-state density:

ρ χ α1
2  21  2C cos( ) ( ) = + ( ) ⋅( ) + ( ) −[  ]{  }r  r d;  ,t m t m t dh h
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Figure 6. Geometry of
Interference Fringes
The diagram shows the interfer-
ence fringes in the image of two
expanding BECs that were 
initially trapped in the right (R)
and left wells (L) of a double-well
potential. As defined in the text,
the r-vector denotes the position
relative to the center of the right
well, and the d-vector denotes
the relative position of the cen-
ters of both wells. The high-
density regions of the interfer-
ence fringes are planes oriented
perpendicular to d. At a time t
after releasing the BECs,
the interference fringe planes 
are separated by a distance 
λ = ht /(md ). The actual positions
of the fringes depend on the
phase difference α of the initial
BECs (if the BECs are phase
coherent, χ = χL + eiαχR).

L R
d

rL = r + d r

ρ(r)

Initial state:  + ei 
R

(12)



Assuming that r1 and r2 are located in the region where |χL(r1; t)| ~ |χL(r2; t)| = χ,
the two-particle density defined in Equation (12) takes on the form

which contains the typical oscillatory contribution seen in Equation (9) describing an inter-
ference pattern. Thus, although the system is in a number state and the single-particle den-
sity does not exhibit interference, the two-particle density ρ2(N) does show interference. 

The sinusoidal contributions in Equation (13) arise from the interference of the two
distinct two-particle events illustrated in Figure 7. In one event, the particle detected at r1
was initially in the right well, whereas the particle detected at r2 originated from the left
well. In the second event, the situation is reversed: The particle detected at r1 originated
from the left well, whereas the particle detected at r2 originated from the right well.

ρ χ θ θ θ θ2
4 1N t  t t t t( ) ( ) ≈ + ( ) − ( ) −[{ ( ) − ( )( )]}r r r r r r1 2 1 1 2 2, ; cos ; ; ; ;  ,R L R L
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Figure 7. Origin of the Two-
Particle Interference in
Equation (13) 
This schematic illustrates the ori-
gin of the interference pattern in
the two-particle density for an
expanding two-particle system
that originates in a number state
of a double-well potential. (a) The
origin of the coordinate system is
the center of the right potential
well. (b) In event 1, the particle
detected at r1 originates from the
right well; the particle detected at
r2, from the left well. (c) In event
2, the particle detected at r1 origi-
nates from the left well, whereas
the particle detected at r2 origi-
nates from the right well.
Because the two-particle wave
function consists of a superposi-
tion of terms that correspond to
the classical trajectories shown
in (b) and (c), these events can
interfere.

(13)



Using Equation (10) for the phase difference between the two single-particle wave
functions at a position r, θR(r) – θL(r) ≈ – (m/2ht)[2d ⋅ r + d2], we find that the two-
particle distribution depends only on the relative position r1 – r2,

(14)

Whereas the likelihood of detecting the first particle at position r1 is independent of
r1 in the far region ρ1(N) ≈ χ2, the likelihood of detecting a second particle at r2 is
greater near the planar regions d ⋅ (r1 – r2) = n(ht/m), where n denotes an integer.
Note that the planar regions of maximal ρ2(N)-values resemble the interference fringes
of ρ1(C) in Equation (11), namely, the single-particle density of the expanding, mutual-
ly coherent two-particle double-well system. In fact, the fringe patterns for the two-par-
ticle density will be identical to those of an equivalent mutually coherent system, pro-
vided the relative phase α is chosen so that the fringes of that equivalent system over-
lap the position where the first particle was detected. Because the position of the first
particle is undetermined until measured, we can say that it is the act of determining 
the first particle’s position that fixes the value of the relative phase of an equivalent 
mutually coherent system. The two-particle number-state probability distribution then
resembles the product of one-particle probability distributions of the equivalent mutually
coherent system. That equivalence is a general feature: The more particles detected in
the image of an expanding number-state double-well BEC, the more the outcome of
such measurement resembles that performed on a mutually coherent double-well BEC.
The relative phase of the equivalent mutually coherent BEC system can be extracted
from the image but cannot be determined beforehand. 

The equivalence to a mutually coherent state with a value of the phase difference
that is established by the act of measurement is familiar from the observation of inter-
ference of independent lasers (Pfleeger and Mandel 1967) and of the dc Josephson
effect (Anderson 1986). 

Relative Phase Dynamics for Two N-Particle BECs. Our derivation of the num-
ber-state two-particle density and its equivalence to a mutually coherent state density
of undetermined relative phase is not easily generalized to a number-state double-
well system with larger particle numbers. Instead, we can apply the elegant descrip-
tion developed for the relative phase dynamics of Josephson junctions. In this
description, the dynamics between the two weakly linked superfluids is cast in terms
of only two variables: α, the relative phase, and m, half the difference of the number
of particles contained in each well. In fact, m and α are quantum numbers, and the
number states are the eigenstates of m. We denote by |m〉 the number state of a dou-
ble-well system with N-particles per well, of which N – m occupy the left well and 
N + m, the right well. 

An alternative set of basis functions is provided by states of good relative phase |α〉
= N–1/2∑m exp(iαm)|m〉. The transformation from the |m〉-basis to an |α〉-state represen-
tation is therefore a Fourier transform, somewhat analogous to the transformation
between the traditional momentum and coordinate representations. Just as coordinates
and momenta are conjugate to each other, m and α are conjugate variables. The many-
body state can be expanded in either the |α〉-states or the |m〉-states, |Ψ〉 = ∫dαΨ(α)|α〉 =
∑mΨm|m〉, where Ψ(α) and Ψm are equivalent to the coordinate (x) and momentum (p)
representations of a single-particle state. Generally, the Ψ wave function implies a
spread both in the m and α variables: ∆m = (〈(m – 〈m〉)2〉)1/2, ∆α = (〈(α – 〈α〉)2〉)1/2,
where 〈 〉 denotes the expectation value. As conjugate variables, ∆m and ∆α satisfy the

ρ χN t m t, , ;  .2
4 1r r d r r1 2 1 2( ) ≈ + ( ) ⋅ −( )[ ]{  }cos h
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Heisenberg uncertainty relation ∆m × ∆α ≥ 1, whereas ∆x and ∆p satisfy the relation
∆x × ∆p ≥ h in single-particle quantum mechanics. 

To continue our comparison of BEC interference experiments with single-particle
quantum mechanics, we note that the establishment of a relative phase between inter-
fering BECs is the analogue of a position measurement on a particle in a plane-wave
state. When the plane wave has a well-defined momentum, then ∆p = 0 and ∆x → ∞.
The latter expression means that the coordinate has maximum uncertainty, and there-
fore, a measurement of x could yield any value. Likewise, in the initial state of the
interfering BEC experiment, ∆m = 0, and the determination of α achieved by the imag-
ing of the expanding BECs could yield any value. When the measurement is per-
formed, however, the wave function collapses to an eigenstate of α. 

Squeezing the Numbers in BECs—Macroscopic Quantum
Fluctuations

As mentioned previously, the number-phase description in terms of the α or m quan-
tum eigenvalues is familiar from the treatment of Josephson junctions. The application
of the number-phase description to the problem of double-well BECs then reveals an
intimate connection between the physics of BEC interference and Josephson physics.
However, the BEC interference experiment conducted at MIT lacks the weak link
through which the superfluids can exchange their boson particles. Consequently, it is 
not exactly a BEC-Josephson experiment. In a subsequent effort, the Kasevitch group 
at Yale used a related setup and succeeded in inducing and controlling such reversible
superflow between multiple BECs. The Yale experimentalists achieved this goal by 
trapping the BECs in the potential minima of an optical lattice—a trapping potential 
that oscillates sinusoidally in space as E02 sin2(kx)—and by lowering and raising 
the potential barriers separating the BECs through variations of |E0|2 . Most important,
the Yale group probed Josephson physics by observing variations in the interference 
pattern of the expanding BECs after switching off the optical-lattice potential. 
The sharpness of the interference fringes revealed the uncertainty in relative phase,
∆α, of the expanding BECs. In particular, when the barrier height had been sufficiently
increased before the BECs were released, the fringes observed in the image of the
expanding BECs became fuzzy, an indication that the uncertainty in the phase values 
of the initial BECs had increased markedly. This increase is expected as the number
uncertainty decreases. As we argue below, this is a genuine quantum fluctuation effect
observed in a macroscopic system. To set the stage, we start by elucidating the role of
the quantum fluctuations in multiple-well BEC physics. 

Quantum and Classical Physics of Double-Well BECs. As in Equation (1), the
classical or mean-field description of the N-particle double-well system, the many-body
wave function is a product state: Ψ(r1, r2, …, rN;t) ≈ χ(r1;t)..., χ(rN;t), where each 
single-particle wave function is a linear superposition of left-well (χL) and right-well
(χR) wave functions,

χ(r;t) = 1/(2N)1/2[(N – m(t))1/2χL + eiα(N + m(t))1/2χR]  , (15)

and α and m are well-defined parameters. We use the same notation as in the number-
phase description because the physical interpretation of α and m is the same as that of
the quantum eigenvalues introduced above. In fact, α(t) and m(t) in Equation (15) are
the expectation values of the quantum treatment of the number-phase dynamics. The
classical treatment can then describe superfluid effects, the essence of which relies on
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the existence of a well-defined phase—see Equations (1) to (4) and the section “The
Coherent Wave Nature of Superfluidity”—but it cannot account for behavior such as the
collapse to a random value of the relative phase in the imaging of interfering BECs.
More generally, contrary to predictions of classical mechanics, the quantum treatment
predicts different outcomes of identical measurements on identically prepared systems.
Measures of such quantum randomness are the standard deviations, such as the devia-
tions ∆α and ∆m introduced earlier, that quantify the range of quantum fluctuations. For
sufficiently large numbers of atoms, ∆m can take on values that are large enough for the
fluctuation range to be called “macroscopic.”

Weakly Linked BECs. When the barrier separating the two potential wells in the
double-well BEC is lowered to an appropriate value, atoms can penetrate the barrier,
which thereby provides the weak link that allows the left and right BECs to exchange
particles. As in the description of BEC interference, we define a phase for each BEC
and describe the possible particle exchange in terms of the canonically conjugate vari-
ables that represent the difference of the condensate phases, α, and half the difference of
the particle population, m, occupying the individual BECs. The inter-BEC particle
exchange gives rise to an effective tunneling energy of the usual Josephson form,

(16)

We expect the value of EJ to be roughly proportional to the number of particles (N)
per well, to depend weakly on the number difference m, and to be extremely sensitive to
the height of the potential barrier separating the BECs. As the barrier height increases,
the tunneling of particles is restricted, a limitation corresponding to a decrease in the
value of the EJ -parameter in Equation (16). In what follows, we write 
EJ = 2NJ, where J denotes the tunneling energy per particle. The tunneling energy, mini-
mized by putting α = 0, favors a well-defined value of the phase difference in the
ground state and, hence, favors the establishment of a definite phase difference (the
superfluid limit). In contrast, the usual interparticle interactions, if repulsive, favor a
well-defined value of m. To see that, we note that the interparticle interaction energy
scales as the number of interactions. The NL-particles (in the left BEC) experience
NL(NL – 1)/2 ≈ NL

2/2 interactions. Similarly, the NR-particles (contained in the right
well) undergo NR

2/2 interactions. Assuming that the interaction energy per particle, U, is
approximately the same in each well and using NL = N – m and NR = N + m, we write
the total interaction energy as

E EJtun cos= − ( )α  .
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Figure 8. The Bose-
Hubbard Model
The diagram shows an optical-
lattice potential occupied by
atoms of integer spin. The
interactions between the atoms
include a hopping or tunneling
interaction and a repulsive
interaction between atoms at
the same site.

U

V0 sin2(kx)

J

HB-H = Um2 – 2JNcosα
      J = Tunneling energy per particle

     U = On-site interaction energy per particle



.                                                       (17)

In contrast to the tunneling energy, Eint takes on its minimum value at m = 0, corre-
sponding to the BEC number state with NR = NL = N. The contribution to the energy
that stems from the phase-number dynamics (the sum of interaction and tunneling ener-
gies after the constant UN2-term has been discarded) is then equal to

(18)

Classically, the position of lowest energy is m = 0, α = 0. Quantum mechanically, it fol-
lows from Heisenberg’s uncertainty principle that m and α, being conjugate variables,
cannot be determined simultaneously to absolute certainty. We now use the double-well
Bose-Hubbard Hamiltonian in Equation (18) as a starting point to indicate how weakly
linked BECs can be regarded as a laboratory for exploring both the classical dynamics
and the quantum nature of Josephson junctions. A schematic representation of the indi-
vidual terms that contribute to this Hamiltonian is shown in Figure 8.

Probing Josephson Physics in Weakly Linked BECs. The Bose-Hubbard
Hamiltonian in Equation (18) is the generic form of the Hamiltonian that governs the
physics of Josephson junctions. We can expect, therefore, that the atom trap becomes a
new laboratory for studying Josephson effects. Although this physics has been studied
intensely in condensed-matter environments, the new parameter range and technology 
of the BEC traps give a new twist to the study of Josephson-junction physics and other
known phenomena, as well as the opportunity to study quantum fluctuations and,
perhaps, to discover novel applications. 

A sudden change in the depth of one of the wells or in its particle number can
“nudge” the many-body system out of equilibrium, initiating a collective excitation in
which the expectation value of the well populations oscillates. This phenomenon is
called Josephson oscillations. On the topic of probing quantum behavior, it is interesting
that the parameters in Equation (18) can be controlled experimentally: Variations in the
trapping potential can alter the values of U and J. Clearly, the atom-trap technology
gives unusual control over the Josephson junction, providing new knobs that can both
initiate Josephson oscillations and vary the quantum fluctuations. The crucial question
of whether oscillations and fluctuations can be measured in cold-atom BECs was
answered, in part, by the Yale experiment. 

What are the obstacles that the BEC technology faced in probing Josephson physics?
In superconductors, Josephson effects are routinely studied by measurements of the
weak supercurrent. Such measurement of a charged particle can be achieved relatively
simply and accurately. In systems of neutral particles, on the other hand, the observation
of a weak current represents a much greater challenge, and in helium fluids, a Josephson
current was only recently observed (Packard 1998). By the same token, in the neutral-
atom traps, current atom-counting techniques are not sufficiently accurate to allow
observing small-amplitude population oscillations. Numbers of atoms in a typical BEC
are measured with a relative accuracy of only about 10 percent. This low accuracy 
renders the technique unsuitable for observing Josephson oscillations of atomic-trap
populations in the linear regime (number oscillations with a magnitude of 1 percent or
less of the total number of trapped atoms). Instead of measuring a population imbalance,

H Um JN= − ( )2 2 cos  .α

E U N N U N mint R L= +[ ] ≈ +[ ]( / )  .  2 2 2 2 2
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we might try to observe the relative
phase of BECs, which gives a com-
plementary view of the physics; for
instance, the expectation value of
the relative phase oscillates at the
same frequency as the population
imbalance or current in the
Josephson oscillation. The BEC
interference experiment conducted
at MIT illustrated that the relative
phase can be measured from
recorded images of expanding
BECs. This measurement, however,
is destructive and yields a value for
the phase at a single time. Whether
this technique could be used to
probe the time evolution of the
phase is not evident. In addition,
the imaging of BEC interference in
the double-well system gives only a
single value of the phase, whereas a
measurement of the range of quan-
tum fluctuations requires a record
of the phase distribution. 

The Yale experiment resolved the problem of probing the phase distribution by
imaging the interference of many simultaneously expanding BECs, which had been
weakly linked before the trapping potential was released. The resulting image is sensi-
tive to the distribution of the complex phase values of the BECs. If the phases of the
BECs are strongly correlated—they all have approximately the same value, for
instance—then the interference of each pair of BECs can add up in phase and give an
overall pattern with bright and sharp fringes. In contrast, if the phases of the weakly
linked BECs are randomly distributed, then their values, determined by the act of
imaging, differ widely. As a consequence, the fringes corresponding to the interfer-
ence of different pairs of BECs do not overlap, so that interference washes out. The
Yale experiment imaged the density of 12 expanding BECs that had been initially
trapped in the adjacent potential wells of a linear optical lattice and weakly linked
before the optical-lattice potential was released (see Figure 9). In such an optical lat-
tice, the centers of mass of adjacent BECs are all separated by the same distance (half
the wavelength of the light that creates the standing wave pattern of the lattice poten-
tial). By measuring the amplitude and fringe sharpness (defined as the ratio of spatial
width to the distance separating the fringes) observed in imaging the expanding BECs,
the Yale group quantified the uncertainty of the relative phase values. 

As they had ramped up the height of the potential barriers before releasing the
BECs, the Yale group observed a marked decrease in the sharpness of the fringes in
the expanding-BEC images. The measured sharpness was in quantitative agreement
with numerical simulations that were based on the ground-state phase uncertainty. The
assumption that the many-body system has reached its ground state before the trap-
ping potentials are switched off is reasonable because the change in potential barrier
was effected adiabatically in the experiments. In a ground state, the uncertainties of
conjugate variables generally reach the Heisenberg limit, which in this case would
mean that ∆m × ∆α ≈ 1. Thus, from their measurements and the agreement with the
predicted values of phase uncertainty, the Yale group inferred that their observed
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Figure 9. Formation of
Number-Squeezed States
in an Atom-Trap BEC
The sequence of absorption
images, (a)–(c), and the associ-
ated density cross sections,
(a′)–(c′), show atoms released
from optical lattices of increas-
ing depth: U0 = 7.2Erecoil,
U0 = 18Erecoil, and U0 =
44Erecoil, respectively. In (a),
the two-peaked structure is 
due to interference between
atoms released from different
lattice sites. As the well depth
increases and the tunneling
rate decreases, the interference
pattern becomes progressively
blurred, reflecting greater
phase uncertainty and the 
formation of number-squeezed
states.
(Reprinted with permission from Orzel et

al. Science 291, page 2389. Copyright 2001

American Association for the

Advancement of Science.)



increase in phase uncertainty implied a similar decrease in number uncertainty ∆m.
By analogy with a similar reduction of uncertainty in optical field intensities, the
process of reducing ∆m << N1/2 is called “squeezing.” In Figure 10, we further illus-
trate the aptness of this term by sketching the effect of varying the parameters of the
Hamiltonian in Equation (18) on the Wigner distribution function. 

The experimental increase of the potential barrier height lowers the value of J,
which greatly reduces the tightness of the confinement in the α-direction of the 
(α, m)-phase space. In response, the Wigner distribution stretches out farther in 
the α-direction. Since the area of high probability shown in Figure 10 remains of
order 1, the uncertainty in the m-direction is tightly squeezed. Thus, as the hopping
motion of particles between adjacent wells is “frozen out,” each well contains a
better-defined number of particles. To further support their claim of having
observed quantum fluctuations, the Yale group also demonstrated that the trend of
decreased fringe sharpness may be turned around by reversal of the variation in
potential barrier height. 

Quantitative Treatment of Number Squeezing. We now revisit the description
of the double-well BEC to provide a quantitative understanding of the number
uncertainty squeezing illustrated in Figure 10. We introduce a dimensionless param-
eter, or coupling constant Γ, that characterizes the competing interactions in the sys-
tem: Γ = UN/2J is the ratio of the interparticle interaction energy per well (UN2/2)
to the tunneling energy per well NJ (the latter plays a role somewhat analogous to
that of kinetic energy in other systems). We minimize the Hamiltonian described by
Equation (18) in the α-representation. To convert Equation (18) from the number
representation to the α-representation, we replace the m-operator by –(1/i)∂/∂α.
Then, we calculate the expectation value of the Hamiltonian by using the Gaussian
state for the wave function ψ, ψ(α) ∝ exp(–α2/(4x). The expectation values are sim-
plified when expressed in terms of the width parameter x, which is related to the 
uncertainty in phase difference as ∆α = (2x)1/2: 〈m2〉 =  –〈∂2/∂α2〉 = 1/(2x) and
〈cos(α)〉 = exp(–x). 
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Figure 10. Number
Squeezing in Phase Space 
This graph illustrates the
physics of number squeezing
by showing the effect of an
increase in the potential barrier
on the number phase (m,α)
Wigner distribution of the dou-
ble-well BEC discussed in the
text. The graphs show the area
in which the Wigner distribu-
tion of the many-body ground
state exceeds a minimal value.
An increase in the potential
barrier lowers the tunneling
rate J , which reduces the
{tightness of confinement in
the α-direction of the (m,α)
phase space. The word 
“confinement” refers to the
potential energy-like term in
the energy expression of
Equation (18) that depends on
α. As a result of lowering J,
the ground-state Wigner distri-
bution stretches out in the 
α-direction. In accordance with
the Heisenberg uncertainty
principle (∆m∆α ≈ 1), the area
of high Wigner distribution
value remains constant in the
process of stretching and the
number uncertainty ∆m
decreases accordingly.
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The expectation value of the Hamiltonian is then equal to

(19)

and we obtain the value of the width parameter x by minimizing Equation (19):

.
(20)

In the weakly coupled regime Γ << 2N2, the minimum expectation value occurs at
a value x << 1, in which case exp(x/2) ≈ 1 and Equation (20) yields the width param-
eter x ≈ (Γ/2)1/2/N. In other words, the weakly coupled case yields a very small phase
uncertainty,

∆α = (2x)1/2 ≈ (2Γ )1/4/ N1/2 << 1  , (21)

and therefore corresponds to the superfluid limit. Most superconducting Josephson
junctions find themselves in this limit. Because the number uncertainty is small,
∆α ~ N–1/2, the classical (or mean-field) approximation successfully describes these
Josephson experiments. The uncertainty in particle number ∆m ≈ N1/2/2Γ1/4 appears
Poissonian (∆N ≈ N1/2) if we write it in terms of the coupling constant. The small
phase uncertainty in this regime is not easily measured with appreciable accuracy. 

In contrast, as the value of J is lowered by an increasing barrier height, the coupling
constant Γ = [UN/2J] increases accordingly, and the phase uncertainty can increase to
give a measurable decrease in fringe sharpness. In the Yale experiment, the increase in
the potential barrier was sufficient to allow the system to approach the strong coupling
regime Γ ~ N2 or U/J ~ N. In that regime, the value of x at the minimum energy can
become of order 1, in which case we cannot replace exp(x/2) by 1. Instead, we must
solve Equation (20). By the time the potential barrier has been increased to the point
that, say, U/J = (4/e)N, the variation becomes ∆m = (l/2)1/2, and the uncertainty in
atomic population of each well has dwindled to less than one particle. At that point,
∆m << N1/2, and we say that the number distribution has become sub-Poissonian. 
The phase-difference uncertainty, ∆α, also becomes of order unity. Well before that
point, say, when U/J is increased to only 10 percent of N, or U/J = 0.1N, the uncer-
tainty in phase difference in the double-well BEC has grown to half a radian. In the
multiple-well BEC system, the uncertainty in phase between nonadjacent wells under
that same condition, U/J = 0.1N, is greater, and the loss of fringe sharpness in the
interference of 12 BECs is quite noticeable. 

From Superfluid to Mott Insulator 

By illustrating number squeezing, the Yale group demonstrated that BEC technology
can engineer and observe quantum fluctuations of an almost macroscopic system. On
the other hand, technical constraints in the Yale experiment limited the height to which
the potential barrier could be raised and, hence, the range to which the number uncer-
tainty could be squeezed. These limitations prevented the Yale group from venturing 
further into the strong-coupling regime. By pushing this frontier, Hänsch’s group in
Munich were able to observe a very interesting phase transition (Figures 11 and 12). 
As they squeezed the number uncertainty below a value of order 1—it would be (1/2)1/2
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in the approximations introduced previously—the ground state abruptly changes to a
Fock or number state with ∆m = 0. This phenomenon is a true phase transition: Many-
body properties change suddenly as U/J ~ N. In addition to the change in number statis-
tics, the system’s conductivity alters discontinuously as the system takes on a number
state. In the number state, a finite amount of energy is required to transfer atoms between
wells; therefore, the transition to the number state abruptly alters the nature of the 
many-body system from a conductor with superfluid properties to a Mott insulator. This
many-body phenomenon is an example of a transition driven by the competition between
different interactions, rather than by the competition between order and disorder, which is
responsible for usual phase transitions. If they involve quantum fluctuations, the former
transitions (which occur at zero temperature) are called quantum phase transitions. 

If we can trust the tunneling energy in Equation (16) and the interaction energy in
Equation (17) to accurately describe the many-body physics, then the BEC in an optical
lattice is an example of a Bose-Hubbard system. The theory of the phase transition from
superfluid to Mott insulator in such systems has been explored in great detail.
Experimentally, this transition was first observed in an array of superconducting
Josephson junctions. In BEC physics, the experimental study of the transition by the
Munich group demonstrated, once again, that the BEC technology gives an unusual
degree of control. 
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Cigar-Shaped BEC Spherical  BEC (a)

(d) (e) (f)

(b) (c)

Cubic-Lattice Variation in Optical Potential Height

Release

Time

Mirrors

V0

Vmax

Capturing Atoms in an Optical-Lattice Potential

Potential Interference Fringes

In the BEC experiment that demonstrated the quantum phase
transition from a superfluid to a Mott insulator (Greiner
2002), the experimentalists started with a cigar-shaped BEC
(a) that was relaxed to a spherical BEC (b), distributing the
atoms more evenly over a larger region of space. By shining
in three laser beams, detuned from each other and reflected
by mirrors, the researchers created a standing-wave pattern
that captures the atoms in an optical-lattice potential (c):
V (x, y, z) = V0[sin2(kx) + sin2(ky) + sin2(kz)], where k denotes
the wave vector of the laser light. Gradual increases in laser 

intensity and, hence, in the potential V0 trap one to three
atoms per potential minimum, or well. These minima form a
cubic lattice (d). In (e) we show a typical variation of the opti-
cal potential height V0: The potential height is ramped up
“slowly” for 80 ms and kept constant for another 20 ms; then
the trapping potential is suddenly switched off, at which
point the atoms in the BEC begin to expand. In (f), the atomic
wave functions from different wells begin to overlap, and the
atomic density imaged in a plane shows
interference fringes.

Figure 11. Demonstration of a Transition from a Superfluid to a Mott Insulator



Before describing the experiment, we demonstrate the transition in the double-well
BEC system. From Equation (19), we see that, in the limit of large phase uncertainty 
(x → ∞), the expectation value of the number-phase energy—Equation (18)—vanishes.
Consequently, when the local minimum of 〈H〉 takes on a positive value, the true 
minimum of the system is found at x → ∞, as we illustrate in Figure 13. As the value 
of U/JN increases, the value of the local minimum increases until, at U/J = (4/e)N,
corresponding to ∆α = 21/2 and ∆m = 2–1/2, the value of the minimum turns positive 
and the real minimum is at x → ∞, corresponding to ∆α → ∞ and ∆m = 0. 

A significant difference between the Yale and Munich experiments lies in the number
of potential wells created in the optical lattices. The trapping potential in Hänsch’s
group was a three-dimensional lattice of 65 sites in each dimension. The large number
of lattice sites in the Munich experiment, 653 in total, is significant because it allows
experimentalists to trap one to three particles per site while still having a sufficiently
large total number of atoms to image the interference of the expanding BECs. By lower-
ing the value of N (N was about 10,000 in the Yale experiment), the Munich group could
reach the critical ratio of U/J ~ N with a much smaller increase in barrier height.
Actually, the simple (α, m) treatment of the number-phase dynamics in the double-well
BEC becomes invalid for small values of N and a different description, such as the one
presented by Subir Sachdev (1999), is necessary. Nevertheless, the (α, m) description
still captures the main features and predicts the correct order of magnitude of the transi-
tion point. Hänsch’s group also probed the excitations of this system and found evidence
for the insulator property of a finite energy (or “gap”) necessary to allow transferring
atoms between wells. Again, these experiments illustrate the unprecedented tools offered
by the cold-atom technology. 

Los Alamos Achievements and Future Work

With regard to fundamental physics, we have shown that BEC experiments can
probe beyond the confines of traditional condensed-matter Josephson-junction studies
by exploring and engineering quantum fluctuations. We have also emphasized that
atom-laser systems with superfluid properties (long-range phase coherence in an equi-
librium as opposed to a nonequilibrium state) may offer unique opportunities for
application. For instance, the BECs may find novel uses in atom interferometry and
sensing applications.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Absorption
Images Showing a
Transition to a Mott
Insulator in a BEC
The BEC absorption images
(a)–(h) were recorded in a 
particular plane 15 ms after 
the trapping potential was
switched off. The images
reflect different maximum 
values Vmax of V0. In units of
the recoil energy, Erecoil =
hh2k2/2m (capital R was used
for “right”), Vmax took on 
the values (a) 0, (b) 3Erecoil,
(c) 7Erecoil, (d) 10Erecoil ,
(e) 13Erecoil, (f) 14Erecoil,
(g) 16Erecoil, and (h) 20Erecoil.
Notice that the interference
pattern completely disappears
between V0 = 14Erecoil and V0
= 16Erecoil, in agreement with
the prediction that all phase
information would be lost as
the potential barriers increase
and the atoms become 
localized in their respective
potential wells.
(This figure was reproduced courtesy of

Nature.)



Hopefully, this historical perspective has also conveyed a sense of the flexibility of
the cold-atom-trap technology. That flexibility has led to a host of other avenues being
pursued or contemplated: for instance, schemes to alter and control the nature and
strength of the interparticle interactions, already successful searches for superfluid 
properties in BECs, demonstrations of nonlinear physics effects in superfluids 
(vortices, solitons, and “quantum shocks”), the study of mutually coherent BECs,
the demonstration of atom-molecule BECs, and the prospect of using BECs for the
study of quantum measurement theory. 

Los Alamos National Laboratory has been active in exploring several of the above
aspects. The following are some of the Los Alamos contributions and ongoing projects
that we are aware of. On the experimental side, David Vieira and Xinxin Zhao are work-
ing toward the use of an atomic BEC to cool down fermion atoms (see the article
“Experiments with Cold Trapped Atoms” on page 168). On the theoretical side, Peter
Milonni was the first to point out that external electric fields can be used to control the
interparticle interactions in the atom-trap systems (Milonni 1996). Diego Dalvit, Jacek
Dziarmaga, and Wojciech Zurek resolved the puzzle of the lifetime of the proposed
Schrödinger cat states in BEC-like systems, and they have proposed schemes to reduce
the effect of decoherence and increase the cat’s longevity (see the article “Schrödinger
Cats in Atom-Trap BECs” on page 166). In collaboration with experimentalist Roberto
Onofrio (visiting from the University of Padua, Italy), they continue to explore the possi-
ble use of BECs in studies of measurement theory. Lee Collins has explored the vortex
and soliton dynamics in BECs, working closely with the experimental group of Bill
Philips at the National Institute of Standards and Technology (Denschlag et al. 2000).
Gennady Berman and Augusto Smerzi are exploring the possibility of using BECs to
study the boundary between quantum and classical behavior (Berman et al. 2002), as well
as using BECs in optical lattices for interferometry purposes (Dziarmaga et al. 2002). 

Since 1996, I have also been active in BEC research. The prediction for the phase
separation of BECs under specific conditions (Timmermans 1998) has been confirmed
by experiments in Ketterle’s group at MIT. This same group also confirmed our 
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Figure 13. Number-Phase
Energy for Different
Interaction Parameters
The expectation values of the
number-phase energy of
Equation (18) are calculated
with a Gaussian trial wave
function ψ (α) ∝ exp(–α2/ [4x] )
and are plotted as a function of
the width parameter x, which is
related to the phase uncertain-
ty ∆α as x = (∆α)2/2. The differ-
ent curves show H(x) for differ-
ent values of the interaction
parameter (2N2/Γ). From bot-
tom to top, those values are
10, 5, e, and 1. For (2N2/Γ) < e,
the local minimum is also the
global minimum, whereas for
(2N2/Γ) > e, the global mini-
mum occurs in the limit x → ∞,
corresponding to a complete
uncertainty of the phase.
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predictions for the reduction of scattering slow distinguishable particles by the 
BEC (Timmermans and Côté 1998) and for the excitation rate of phonon modes in two-
photon scattering experiments. Recently, the group of Wieman at JILA found 
evidence for a prediction by Timmermans et al. (1999) of the formation of an atom-
molecule BEC in the Feshbach resonance scheme that was initially proposed to alter 
the effective interparticle interactions. In a recent collaboration with Milonni of 
Los Alamos and Arthur Kerman of MIT, I pointed out the possibility of creating a fermi-
on-boson superfluid (Timmermans et al. 2001) by bringing an ultracold fermion gas 
mixture near a Feshbach resonance. Finally, I discovered the heating mechanism that
explains the temperature limit encountered by efforts in fermion atom cooling and 
provides the main obstacle for the current experiments to reach fermion superfluidity in
atom traps (Timmermans 2001a).

The variety of approaches and cold-atom research topics at Los Alamos is yet another
measure of the richness of this field. By now, numerous experiments have established
the cold-atom trap as a new kind of laboratory in which to study interesting fundamental
issues in low-temperature, many-body, and nonlinear physics. The unusual control and
the variety of experimental knobs also hint at the possibility of practical applications.
Hopefully, Los Alamos can continue to play a significant role in the ongoing cold-atom
physics adventure. �
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Microscopic quantum superpo-
sitions are routinely observed
in experiment. Macroscopic

quantum superpositions, on the other
hand, are still encountered rarely
despite nearly a century of experimen-
tation with quantum mechanics. Fast
decoherence of macroscopic states is 
to blame for this state of affairs (see 
the articles “Decoherence and the
Transition from Quantum to Classical”
and “The Emergence of Classical
Dynamics in a Quantum World” on
pages 86 and 110). And yet, the past
few years have witnessed several break-
throughs in the macroscopic regime. 
To name a few, superposition states of
macroscopic numbers of photons and
atoms have been produced in cavity
quantum electrodynamics, matter-wave
interference in fullerene carbon-60 has
been observed, and controlled decoher-
ence due to engineered environments
has been measured in ion traps.
Recently, the first detection of a macro-
scopic Schrödinger cat state in a radio-
frequency (rf) superconducting
quantum interference device, or SQUID
(a superposition of clockwise and coun-
terclockwise superconducting current
flow), was reported. All these achieve-
ments tempt one to try similar investi-
gations of basic quantum mechanics in
the rapidly growing field of Bose-
Einstein condensates (BECs). 

In the article “Atom-Trap BECs” on
page 136, Eddy Timmermans describes
the possible emergence of nonclassical
behavior by number squeezing in a
dilute BEC. For a double-well configu-
ration, the ground state of the conden-
sate is determined by the competition
between the tunneling energy 

Etun = –γEJcosα, which favors states
with a well-defined relative phase
between the wells, and the interaction
energy Eint = (U/2)(N2 + m2), which
favors number states in each well. When
the interaction energy is repulsive (U >
0), the ground state corresponds to m =
0, and α = 0, that is, an equal number of
particles in the two wells with zero rela-
tive phase. However, for attractive inter-
actions (U < 0), the ground state is very
different: It corresponds to a superposi-
tion of states with m = +N and m = –N,
namely,

This state is clearly nonclassical, all N
bosons being simultaneously in the left
well and in the right well. It corre-
sponds to a macroscopic quantum
superposition—a BEC Schrödinger
cat—analogous to Schrödinger’s
Gedanken experiment of a cat in the
weird superposition of being both dead
and alive. 

Various schemes have been pro-
posed for building macroscopic super-
positions in BECs. For example, for a
BEC in a double-well potential with 
an attractive interparticle interaction,
one can in principle create the cat state
through adiabatically cooling down the
BEC until the ground state is reached.
Another option is to confine bosons
that have an attractive interaction
between atoms in two hyperfine levels
(A and B) in a single potential well.
Initially, all atoms in the BEC are in a
given hyperfine state, say A, and then a
resonant rf pulse is applied to the sys-
tem to transfer (or rotate) the atoms

part of the way between state A and B.
The duration of the pulse is much
shorter than the self-dynamics of the
condensate. At this stage, each atom is
in a superposition of levels A and B,
and the corresponding many-body
quantum state is a product of single-
particle superpositions of A and B, that
is, it is still a microscopic superposi-
tion. However, as this initial state
evolves under the nonlinear
Hamiltonian that governs the BEC with
its attractive interparticle interactions,
it reaches a macroscopic superposition
in which all atoms are simultaneously
in level A and level B, |Ψ〉 =
(1/√2)[|NA,0B〉 + |0A,NB〉]. An even
weirder superposition state has been
proposed, namely, a coherent superpo-
sition of atomic and molecular BECs. 
It must be stressed that, to date, no
experiment has been carried out that
attempts to produce any of the afore-
mentioned superposition states. 

The condensate is an open quantum
system, that is, it is in contact with an
environment mainly composed of non-
condensed thermal particles. The inter-
action between that environment and
the BEC cat state may cause the loss of
coherence between the components of
the quantum superposition. If the deco-
herence time were very small, then the
existence of these states in a BEC
would be merely of academic interest
because there would be no chance of
observing them in the laboratory.
Therefore, it is important to understand
how the thermal cloud affects the
longevity of BEC cat states. In princi-
ple, a single noncondensed atom collid-
ing with the condensed superposition
state and taking away information
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about the phase of the state is enough
to kill the atomic coherence. Estimated
decoherence times for the proposed
BEC cat states are inversely propor-
tional to the product of NE (the number
of noncondensed bosons) and  N2

(where N is the number of bosons 
in the condensate), that is, tdec ≈
105 seconds/(NEN2). For NE from 100

to 104 and N from 101 to 107, the deco-
herence times can range over 16 orders
of magnitude, from 1000 seconds down
to 10–13 second. Given that macro-
scopic cats require big values of N, it 
is clear that, for the sake of the cat’s
longevity, one must go beyond the 
standard trap settings. 

In what follows, we concentrate on a
BEC cat formed with two hyperfine
states A and B. We show that, by using
a combination of trap engineering and
what we call “symmetrization” of the
environment, as illustrated in Figure 1,
one can decrease decoherence rates.
First, one prepares the condensate
inside a wide magnetic trap and then
superimposes a narrow optical dip. 
The parameters of the traps are chosen
such that only a single bound state lies
within the dip. The bosons are forced to
adiabatically condense into that state.
Then the magnetic trap is opened, and
most of the noncondensed atoms are
allowed to disperse away. The aim of
this procedure is to eliminate as much
of the thermal cloud as possible.
However, atoms occupying bound
states within an energy band of width
∆E at the mouth of the dip may not dis-
perse away, but the occupation numbers
of those states before the opening of the
wide trap may subsist. Those atoms
would stay in contact with the conden-
sate and continue to monitor its 

quantum state and thereby destroy any
chance of the condensate to form a
superposition. Even if such a truncated
environment is relatively harmless,
there are ways to better protect 
the condensate from it. 

What we call “symmetrization” of
the environmental states can further
reduce the decoherence rate. To pro-
duce symmetrization, one applies an 
rf pulse with frequency ν that induces
coherent transitions between states A
and B of all atoms, both condensed
and thermal ones. On the one hand,
the state of the condensate is still a
macroscopic superposition but slightly
different from the original one
(1/√2)[|NA,0B〉 + |0A,NB〉] because the
rf pulse produces a small increase in
the variance of the number of atoms 
in each well. On the other hand, the
single-particle energy spectrum of 
the noncondensed bosons is modified.
It is now composed of two energy-
level ladders shifted with respect to
each other by 2ν. One ladder is shifted
down, corresponding to states sym-
metric under the interchange A ↔ B,
and the other is shifted upwards, cor-
responding to states antisymmetric
under such interchange. When the
energy bandwidth near the mouth of
the dip ∆E << 2ν, only symmetric
environmental states are occupied. 
A collision between atoms occupying
those states and the condensate does
not affect the phase coherence of the
latter because both states and the inter-
action Hamiltonian are symmetric
under the interchange A ↔ B. In other
words, a symmetric environmental
state affects the components (|NA,0B〉
and |0A,NB〉) of the BEC cat in exactly
the same way, multiplying them by a

common phase factor, which obvi-
ously does not affect the phase coher-
ence of the condensate. When the
relation ∆E << 2ν does not hold,
some atoms will occupy antisymmet-
ric environmental states and can cause
decoherence. However, since that
occupation number can be controlled
by the intensity of the laser field
inducing the coherent transitions
between the states A and B, the
method of symmetrization can still
significantly extend the longevity of
the BEC cat. �
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Those of us who have fun
trying to take a picture of a
fast moving object usually

end up with a blurry, imprecise
image. Something similar happens
when we try to make precision
measurements on moving atoms—
the movement results in a broad-
ening of intrinsic atomic line
widths, and we end up with an
imprecise understanding of the
subtle atomic processes that pro-
duce those lines. Likewise,

detailed studies of the interactions
between atoms are hindered by
motion because energetic colli-
sions between atoms tend to com-
plicate the system’s dynamics
and/or mask quantum effects. In
general, if we are interested in
making precision measurements
on the individual or collective
properties of free atoms, we have
to slow the atoms down. 

Kinetic theory tells us that the
velocity of an atom in a gas is pro-

portional to the square root of the
temperature and inversely propor-
tional to the atom’s mass. The
atoms and small molecules in the
air that we breathe, for example,
move about at astonishingly high
velocities at room temperature—
about 4000 kilometers per hour.
Because the velocity varies only as
the square root of the temperature,
one must make a gas very cold in
order to substantially slow the
atoms. At one degree above
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absolute zero (1 kelvin), atoms
still cruise at a few hundred kilo-
meters per hour. Only when tem-
peratures of a few millionths of a
kelvin (a few microkelvins) are
reached do free atoms move
slowly enough that we can make
high-precision spectroscopic 
measurements. 

Several methods have been
developed that use laser light to
cool gases to the microkelvin tem-
perature range. The cold atoms can
then be contained within different
kinds of atom traps, where they
can be studied very accurately or
cooled to even lower temperatures.
The traps also allow us to concen-
trate a large number of atoms into
a small volume. As the number
density increases, the individual
atoms begin to “feel” one another,
and we can begin to study the
transition from individual to col-
lective behavior. With certain
“bosonic” atomic species, cooling
and trapping techniques enable us
to create one of the most fascinat-
ing—and fragile—states of matter
in the universe, the Bose-Einstein
condensate (BEC). See the box
“The Bose-Einstein Condensate”
on the next page and the article
“Atom-Trap BECs” on page 136.

The atom-trapping team at Los
Alamos National Laboratory has
adapted cooling and trapping tech-
niques to radioactive atoms for both
fundamental and applied research.
We are in the process of making

sensitive measurements of parity
violation in nuclear beta-decay as a
means to test the Standard Model
of electroweak interactions. We are
also trying to cool a dilute gas of
fermions to a degenerate quantum
state (degenerate Fermi matter),
where the density is comparable to
that found in a BEC. Aside from
displaying interesting quantum
mechanical properties, ultracold
fermions could undergo a phase
transition to a superfluid state, and
our apparatus should give us
unprecedented control in forming
and studying this system. Finally,
we are using atom-trapping tech-
nology to trap and measure isotopic
ratios of selected nuclear species at
ultrasensitive levels for nonprolifer-
ation treaty verification and envi-
ronmental studies.

Cooling and Trapping
Techniques

Laser cooling of neutral atoms
was proposed in 1975 by
Theodore Hänsch and Arthur
Schawlow, both then at Stanford
University. The basic idea was to
use the momentum transfer
between a photon and an atom to
slow the atom down. 

When an atom absorbs a pho-
ton, its momentum is reduced by
an amount p = hν/c where h is
Planck’s constant, ν is the fre-
quency of the light, and c is the
speed of light. When the atom

emits a photon, it gains momen-
tum of the same magnitude (a so-
called momentum kick). If, as in
laser light, all the absorbed pho-
tons come from the same direc-
tion, then after many photon
scattering events (rapid absorption
and emission events), the net
change in momentum will be
unequal, since the fluorescent pho-
tons are emitted in all directions
and the sum of the momentum
kicks averages to zero. The result
is a net loss of momentum.1

To get laser cooling to work,
we use the Doppler effect to
ensure that only those atoms 
moving into the laser beam 
will absorb photons. The Doppler
effect relates the intrinsic fre-
quency of a source to the fre-
quency “sensed” by an observer
moving relative to the source. 
The pitch of a siren, for example,
sounds higher when we move
quickly toward it (or it moves
quickly toward us) and lower when
we move rapidly away. Similarly,
an atom “sees” the frequency of a
photon increase when the atom
moves toward the photon. Thus,
if we tune a laser to have a 
slightly lower frequency than the
resonance frequency of an atom’s

1 The change in momentum due to light
scattering means that the atom feels a
pressure, which can be quite large (up to
10,000 times larger than the force of grav-
ity). Radiation pressure provides a very
effective means of moving atoms around. 
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absorption line (detuning), only atoms
that happen to be moving against the
beam see the frequency of the photon
Doppler-shift into resonance (see
Figure 1). These atoms lose momen-
tum and are slowed down (cooled).
Atoms moving in the same direction as
the detuned laser beam are Doppler-
shifted farther away from resonance.
They do not readily absorb photons
and are consequently unaffected. 

To cool the atoms in three dimen-
sions requires six intersecting laser
beams—one pointing in each of the
six directions ±x, ±y, and ±z. Then
any atom that emerges from the inter-
section region will be moving against
a properly tuned laser beam and will
be cooled. 

The force experienced by an atom
during laser cooling is velocity
dependent; that is, its magnitude

Figure 1. Laser Cooling
(a) An atom illuminated by laser light

will absorb and reemit (scatter) many
photons. (b) If the laser frequency is
tuned below the atomic resonance line
(red detuned), then an atom moving
against the laser beam “sees” a laser
frequency that is Doppler-shifted closer
to the absorption maximum. It absorbs
the low-energy laser photons. The atom
then emits a higher-energy photon at
the resonance frequency of its transi-
tion line. The atom loses energy with
each absorption/emission event and
begins to cool. (c) An atom moving in
the same direction as the laser beam
“sees” the detuned laser frequency
Doppler-shifted still farther away from
its absorption maximum. The atom
absorbs few photons and is not cooled.

Atom’s 
absorption
profile

Doppler-shifted 
laser line

Doppler-shifted laser line

(b) Atom Moving into Laser Beam

Laser line

(c) Atom Moving with Laser Beam

Frequency

Frequency

Emitted photons
Σ pi = 0 

Absorbed photons
Σ pi = –P 

Laser beam

Atom

(a) Momentum Transfer

The Bose-Einstein Condensate 

Elementary particles—and collections of particles such as nuclei and
atoms—are either fermions (and have half integer spin) or bosons (and
have integer spin). In the mid-1920s Albert Einstein, building on the work
of Satyendra Nath Bose, predicted that, at exceptionally low energies, an
ensemble of massive bosons should undergo a transition into a state that
is described by a single, coherent wave function. This coherent state—
now called the Bose-Einstein condensate (BEC)—would be as different
from ordinary matter as laser light is from sunlight. 

Physicists believed that a dilute gas of bosons could form a BEC, but 
the conditions needed to produce one are extreme. In order to become
coherent, or establish a common phase relationship amongst themselves,
the atomic wave functions must overlap significantly with one another.
The spatial extent of the atomic wave function is given by its de Broglie
wavelength λ, and it can be shown that the BEC will form if the atom
density, expressed as the number of atoms in a λ-sided cube, exceeds 2.6.
Both the de Broglie wavelength and the density of a gas depend on tem-
perature, and one can calculate how cold it must be to achieve the critical
density in a cold boson gas. The answer is, on the order of a few hundred
billionths of a kelvin. 

Certainly, one problem in creating a BEC was to find a gaseous system 
that would not coalesce into a solid as the temperature plunged toward
absolute zero. The solution was to use certain alkali atoms (atoms from
group I of the Periodic Table). When spin-polarized, these atoms have a
weak repulsive force between them that would ensure that the system
remained a gas. A BEC of rubidium-87 atoms was finally created and
observed in 1995 by Carl Weiman’s and Eric Cornell’s group at the
University of Colorado / JILA (Joint Institute for Laboratory Astrophysics).
Four months later, Wolfgang Ketterle’s group from the Massachusetts
Institute of Technology created a BEC from sodium-23 atoms. Since that
time, a BEC has been observed in several other bosonic alkali species,
such as hydrogen-1 and lithium-7. All the efforts involved cooling the
atoms (except hydrogen atoms) to less than a millikelvin in what is called a
magneto-optical trap (MOT), reducing the temperature by another order of
magnitude by laser cooling, and then transferring the atoms to a magnetic
trap. There, the atoms are cooled by a technique known as evaporative
cooling to less than 200 nanokelvins to create a BEC. 



depends on the atom’s velocity as it
moves toward the laser beam. (The
three-dimensional laser cooling is
often called an optical molasses
because velocity-dependent forces
are viscous forces and the atom
behaves as if it were entrained in a
viscous liquid. The term optical
molasses was coined by Steven Chu
of Stanford University.) Velocity
dependence means that the cooling
rate decreases as the atom slows
down. When the velocity gained by
the atom as it emits a photon (the
atom recoil) equals the loss of veloc-
ity due to the scattering process, the
cooling ceases altogether. The mini-
mum velocity of the atom at the
“recoil limit” translates into a mini-
mum temperature.2 For sodium
atoms, the recoil limit is
2.4 microkelvins and for somewhat

heavier cesium atoms it is about
0.2 microkelvin. 

The Magneto-optical Trap
(MOT). Although optical molasses
cools atoms down to very low temper-
atures, the atoms can diffuse out of the
laser region through random Brownian
motion. The MOT was invented to
prevent this loss and to confine the
atoms. The idea behind the MOT is to
combine the optical molasses with an
external magnetic field and thereby
create a spatially dependent force that
acts only on atoms that wander from
the trap’s center. The MOT was fully
developed in David Pritchard’s labora-
tory at MIT in 1987. Because of its
relative ease of construction and great
utility, it is perhaps the most com-
monly used atom trap. 

For this trap, three pairs of coun-
terpropagating, circularly polarized
laser beams (σ+ and σ– polarizations)
establish an optical molasses within a
vacuum chamber, as seen in Figure 2.

Outside the molasses region are two
magnetic coils. The current in each
coil runs in opposite directions (anti-
Helmholtz configuration) and creates
a “quadrupole” magnetic field, which
has zero field value at the center
between the two coils. The field gradi-
ent increases linearly as one moves
out from the center in any direction. 

The trap works because an atom’s
magnetic substates (m-states) have
different energies in a magnetic field
(the Zeeman effect), and due to the
field gradient, the m-state energy
increases (or decreases) as the atom
moves out from the center of the
MOT. With reference to Figure 2(b),
an atom in the trap will be illuminated
with both σ+ and σ– circularly polar-
ized laser light. Suppose the atom
moves away from the center of the
trap, say, in the (+z)-direction, so that
it moves into the σ– laser beam, but
in the same direction as the σ+ laser
beam. Both lasers are tuned slightly
below the |S = 0〉 → |S = 1〉 resonance
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2 There are also subrecoil laser-cooling
mechanisms that can cool atoms below
the recoil limit. 

(a) The MOT consists of six circularly polarized laser beams
that intersect at the zero point of a magnetic field (produced
by the set of anti-Helmholtz magnetic coils). The tube 
projecting from the left is used to bring atoms into the 
evacuated glass cell located between the coils. (b) This
schematic energy diagram indicates why trapping occurs.
The σ– polarized light induces a transition from the ground
state |S, ms〉 = |0, 0〉 to the |1, –1〉 excited state, whereas the σ+

polarized light will induce a transition from |0, 0〉 to |1, +1〉. The
atom’s magnetic substates are Zeeman-split by the magnetic

field. As the atom drifts away from the center of the MOT,
say, to the right of the diagram, an atomic transition to the
ms = –1 substate shifts onto resonance with the σ– polarized
laser and starts to preferentially absorb these photons over
the σ+ polarized laser coming from the opposite direction.
The resulting laser-induced pressure “pushes” the atom back
toward the center. The result is the same if the atom moves
out in any direction from the center of the trap.
[Part (b) of the figure was adapted from Phys. Rev. Lett. 59 (1987), p. 2631, with

permission from the authors.]
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|1, 0〉
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Figure 2. The Magneto-optical Trap (MOT)



frequency. At some distance from the
MOT center, the drifting atom will
come into resonance with the incom-
ing σ– radiation (but not with the σ+

light). Similar to the way in which it
absorbs light in an optical molasses,
the atom will begin to absorb more of
the σ– light and will feel a pressure
that pushes it back toward the center
of the MOT. Likewise, an atom mov-
ing in the (–z)-direction (or ±x, ±y
directions) will preferentially absorb
photons from the inward-directed
laser beam and will be pushed back
toward the trap’s center. Because the
magnetic field is symmetric, the atom
becomes trapped in three dimensions. 

Magnetic Traps, Evaporative
Cooling, and the Time-Orbiting
Potential (TOP). While the MOT
requires lasers to trap the atoms, mag-
netic fields alone can create a trapping
potential. A pure magnetic trap makes
use of the fact that atoms will experi-
ence a magnetic dipole force in a
magnetic field gradient F = –µ•∇B,
where µ is the atom’s magnetic
moment and ∇B is the magnetic field
gradient. If the atom is polarized into
the |m = 1〉 substate, the force will be
toward lower magnetic-field values.
The atom is diamagnetic and can be
trapped by a simple magnetic quadru-
pole field, which has a zero magnetic-
field value at the center. 

Magnetic traps are easy to con-
struct, but they have fairly weak trap-
ping potentials (about 1000 times
weaker than found in a MOT). They
can only trap atoms that are already
very cold, with thermal energies
equivalent to 1 millikelvin or less.
Once inside a magnetic trap, the atoms
can be cooled to the limits of laser
cooling. To reach the temperatures
needed to create a BEC, however, we
need another cooling technique,
namely, evaporative cooling. 

Temperature is a measure of the
average kinetic energy of a system,
and in a gas, the energy is distributed

amongst the atoms according to a
Maxwell-Boltzmann distribution. This
means that some atoms always have
greater than the average energy. We
can efficiently cool a gas by removing
the highest-energy atoms. After the
remaining gas re-equilibrates, it will
have a lower average energy. The com-
mon name for this process is evapora-
tion. A liquid that is evaporating (say a
steaming cup of coffee) cools down
because the most energetic atoms
leave (and form the rising steam). 

To further cool the already cold
atoms, we actively eject the most
energetic particles. We stated that the
magnetic trap holds onto diamagnetic
atoms. But atoms polarized in the 

|m = –1〉 substate are paramagnetic
and will be attracted to the higher
magnetic fields outside the trapping
region. A radio-frequency (rf) field
can be used to induce transitions
between magnetic substates and con-
vert an atom that is diamagnetic to
one that is paramagnetic, at which
point it is ejected from the trap. The
frequency of the rf field is chosen
such that only atoms with enough
energy to move to the edge of the
magnetic potential well come into res-
onance with the rf field (see Figure 3).
After ejecting the most energetic
atoms from the trap, the rf frequency
is readjusted so that once again the
most energetic atoms of the now
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Figure 3. Evaporative Cooling
(a) The figure shows the magnetic sublevels of an atom as a function of magnetic-
field strength. An atom in the state |m = 1〉 is diamagnetic because it has lower
energy in weaker magnetic fields. (Therefore the atom is attracted to regions of
weaker field.) Conversely, atoms in the state |m = –1〉 are paramagnetic (that is,
attracted to regions of higher magnetic fields). If the atom is illuminated by an rf
radiation of frequency ν0, then at some magnetic-field value, the atom can come into
resonance with the radiation and undergo a transition from |m = 1〉 to |m = 0〉, and
then from |m = 0〉 to |m = –1〉. The diamagnetic atom converts into a paramagnetic
one. (b) The evaporative cooling technique removes the most energetic atoms from
a magnetic trap. Atoms in the trap are polarized in the |m = 1〉 (diamagnetic) state
and are trapped by the quadrupole magnetic field. The most energetic atoms make
the greatest excursions from the trap center and move into regions of higher mag-
netic field. These atoms come into resonance with an rf field and are converted to
paramagnetic atoms, which are ejected from the trap. (They move to high-field
regions outside the trapping volume.) After reequilibration through atomic colli-
sions, the remaining atoms reach a lower temperature.



colder gas are ejected. In this way, it
is possible to successively skim off
the hottest atoms and thereby evapora-
tively cool the atoms. 

One problem with this cooling
scheme is that the quadrupole field
has zero field strength at the center of
the trap. Consequently, the magnetic
substates are not Zeeman-split at the
center of the trap, so polarized atoms
can undergo spontaneous spin-flip
transitions to the |m = 0〉 or |m = –1〉
substates in this region. The loss rate
by this mechanism increases as the
atoms become colder, making it diffi-
cult to achieve the critical BEC condi-
tions of high atom density and low
temperature. 

The TOP trap, developed by Eric
Cornell and collaborators, eliminates
this problem by adding an off-axis
bias field to the static quadrupole
field. As seen in Figure 4, the mini-
mum of the total magnetic field
becomes shifted away from the trap
center. By rotating the bias field, the

time-averaged total field still retains
its basic quadrupole configuration, but
now it has positive field strength at
the center, so the atoms remain polar-
ized. The bias field must rotate faster
than the atoms can respond,3 but this
objective is easily achieved. The TOP
trap allows the density of atoms in the
trap to increase sufficiently as the
atoms are evaporatively cooled to
reach the conditions for a BEC. 

Atom Trapping at 
Los Alamos

Having cold, almost frozen, atoms
at our disposal allows us to perform
high-precision experiments to test
quantum theories of ultracold ensem-

bles of atoms and the nature of funda-
mental forces. Our system at Los
Alamos, illustrated in Figure 5, com-
bines several of the techniques and
traps discussed above. A high-effi-
ciency MOT that is coupled to an off-
line mass separator is used for
trapping radioactive atoms. Once the
atoms are trapped, they can be
counted with high sensitivity (via flu-
orescence detection) or transferred to
another trap, where various experi-
ments can be performed. At present,
we are pursuing a number of research
initiatives. 

Parity Violation in Nuclear Beta-
Decay. Spatial reflection symmetry,
otherwise known as parity conserva-
tion, maintains that the fundamental
processes of nature should be the
same under a spatial inversion of all
vector parameters. Parity conservation
was verified in electromagnetic and
strong interactions, but as a startled
physics community discovered in the
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Anti-Helmholtz (quadrupole) coils

Trapped atoms

Helmholtz (bias) coils

Figure 4. The Time-Orbiting-
Potential (TOP) Trap
(a) The TOP trap is a magnetic trap that
combines two magnetic fields: a
quadrupole field (produced by the cen-
tral, anti-Helmholtz coils) and a bias
field (produced by the outer Helmholtz
coils). (b) With the addition of the bias
field, the potential minimum of the mag-
netic trap shifts off-axis. By adjusting
the current in the Helmholtz coils, we
make the bias field rotate around the
trap axis and produce a time-averaged
total field with a positive field strength
at the center of the trap. As long as the
bias field rotates fast enough, the atoms
will remain polarized and stay trapped.

3 The atoms oscillate within the harmonic
potential well of the TOP trap. If the
atoms are to experience the time-averaged
magnetic field, the bias field must rotate
faster than the atoms’ period of oscillation.

No bias field Bias switched on Rotating bias

(a)

(b)



1950s, not in the weak interaction.
Despite the astounding progress that
has been made in understanding funda-
mental forces over the past fifty years,
the origin of parity violation in the
weak interaction remains a mystery of
modern science. We hope to make a
very precise measurement of the
degree of parity violation in rubidium-
82 as a means to test current theories. 

One way the weak interaction man-
ifests itself is through a type of
nuclear beta-decay, whereby a proton
in a parent nucleus decays to a neu-
tron, a positron (also known as a beta

particle) and an electron neutrino. 
A daughter nucleus with a different
atomic number is created in the
process. For example, in rubidium-82
decay,

82Rb —> 82Kr + e+ + ν . 

For the initial and final states of inter-
est, this decay involves pure Gamov-
Teller transitions that proceed solely
through the axial-vector (parity-
violating) component of the weak
interaction and is predicted by the
Standard Model to be maximally parity

violating. If the rubidium-82 nucleus
is polarized by a magnetic field, then
parity violation would manifest itself
as an asymmetry in the angular distri-
bution of the emitted positrons rela-
tive to the nuclear spin direction. For
the primary beta-decay branch (in
which the rubidium-82 nucleus decays
to the 0+ ground state of krypton-82),
the positron is emitted in the direction
of the nuclear spin. (In a secondary,
less probable decay branch, the
positron comes out in a direction
opposite to that of the nuclear spin.) 

We have recently demonstrated the
trapping of polarized, radioactive
rubidium-82 atoms. A radiochemically
separated sample of strontium-82 
(t1/2 = 25 days) is loaded into the ion
source of a mass separator. The stron-
tium-82 decays by electron capture to
rubidium-82 (t1/2 = 76 seconds). 
The rubidium-82 atoms are thermally
ionized, electrostatically extracted,
mass separated, and implanted into a
zirconium catcher foil located inside 
a glass cell that sits at the center of a
high-efficiency MOT. Heating the foil
releases the atoms as a dilute vapor
into the glass cell where they are
trapped and cooled. 

The atoms are rapidly transferred
to a second chamber by resonant laser
light “pushing” on them. In the second
chamber, the atoms are retrapped in a
second MOT, further cooled, optically
pumped into a specific magnetic 
substate, and loaded into a TOP 
magnetic trap. Being in a stretched
state, the nuclear spin is aligned 
with the overall spin of the atom.
Consequently, the nuclei are polarized
and aligned with the local field. In 
the center of the TOP, the strongest
field is in the direction of the bias
field, so the direction of the nuclear
spin rotates with the bias field. 

By keeping track of the varying
currents in the bias coils of the TOP
trap, we can reconstruct the direction
of the bias field, hence the spin align-
ment, as a function of time. We can
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Figure 5. Los Alamos Setup to Trap Radioactive Atoms
Cooling atoms to ultralow temperatures must be done in stages, with several traps
and laser configurations. In the setup at Los Alamos, energetic, radioactive atoms
from an ion source are implanted into a thin metal foil that sits within an evacuated
glass cell, around which are the MOT field coils. Heating the foil releases the atoms
into the cell where they are trapped in the MOT and cooled to about 100 µK. The
MOT is turned off, and a laser pushes the atomic cloud into the evacuated chamber
of a second MOT, where the atoms are recaptured. The magnetic field of this second
MOT is turned off and an optical molasses is established by detuning the frequency
of the laser further to the red (that is, to lower frequency). Within a few milliseconds,
the atoms have cooled to approximately 20 µK, and then they are optically pumped
into a diamagnetic substate with a polarized laser beam. The optical pumping beam
is then turned off, and the magnetic field is quickly ramped up in a TOP configura-
tion. We plan to use evaporative cooling to bring the atoms to a final temperature of
a few hundred nanokelvins.



then correlate each beta event with the
orientation of the nuclear spin, and
record the angle between the beta and
the nuclear-spin direction. In Figure 6,
we show our initial proof-of-principle
results, which indicate that parity is,
as expected, violated in the beta decay
of polarized rubidium-82 atoms. This
is the first time that the entire angle-
dependent parity-violating amplitude
has been measured. 

We are in the process of making a
1 percent measurement of this correla-
tion in order to place stringent limits
on the maximal parity-violating nature
of the weak interaction. We hope to
extend that measurement to 0.1 per-
cent and to search for new physics
beyond the Standard Model.4

Ultracold Atoms / Quantum
Degenerate Matter. The ability to
trap and cool different isotopes enables
us to explore mixed fermionic and

bosonic systems. In particular, we are
working to produce a BEC of bosonic
rubidium-87 and overlap it with a
magnetically trapped cloud of radioac-
tive, fermionic rubidium-84. In doing
so, we hope to sympathetically cool,
via atomic collisions, the rubidium-84
atoms down to the Fermi degenerate
regime (approximately 10 to 
100 nanokelvins). We want to study
the fermion-fermion and fermion-
boson collision dynamics at tempera-
tures approaching absolute zero.

Recent calculations show that
rubidium-84 is a good fermionic can-
didate for sympathetic cooling
because it has a large and positive
scattering length with rubidium-87.
Calculations also indicate, however,
that, in the presence of a relatively
low magnetic field (B ~ 100 gauss), a
Feshbach resonance should be present
in rubidium-84. This resonance allows
two colliding atoms to form a tempo-
rary molecule before separating, and
by adjusting the magnetic-field value,
we can fine-tune the energy at which
the resonance occurs. In doing so, we
can control the collision cross section

and effectively “tune” the temperature
at which a phase transition to a super-
fluid state will occur. 

The radioactive rubidium-84 atoms
(t1/2 = 33 days) for our experiments
are produced by proton spallation
reactions on a molybdenum target at
the Los Alamos Neutron Scattering
Center. The rubidium is chemically
extracted from the molybdenum 
and loaded into the ion source of a
mass separator. The rubidium-84 is
implanted and captured in the MOT 
in a similar procedure to that
described in the previous section. 

As an initial step toward achieving
our goal, we have demonstrated the
trapping of rubidium-84. Figure 7(a)
shows the time-dependent trapping
signal from roughly one million
trapped rubidium-84 atoms. At high
atom densities, the losses from the trap
are dominated by laser-light-assisted
collisions between trapped atoms.  

By overlapping a cloud of 3 × 105

cold atoms of rubidium-84 with a
large cloud of 7 × 107 atoms of stable
rubidium-87, we have also been able
to set a limit on the inelastic-collision
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Figure 6. Measurement of Parity Violation 
(a) The figure shows the TOP trap of our experimental system.
The nuclei of the trapped rubidium-82 atoms are spin polarized
and always point in the direction of the TOP’s rotating bias field.
By monitoring the currents that produce the bias field at any
given time, we can reconstruct the magnetic-field orientation;
hence, we know the nuclear spin direction. A plastic scintillator
is used to detect the emitted positrons. When a positron is
detected, we reconstruct the nuclear-spin direction and can 

determine the angle θ between it and the positron emission
direction. (b) Because parity is not conserved in the weak 
interaction, the spin-polarized rubidium-82 nuclei will decay by
preferentially emitting positrons in the direction of the nuclear
spin. (c) This plot of rubidium-82 beta-decay data, accumulated
over a period of 6 hours for positrons with energies above
800 keV, shows the parity violating the angular distribution of 
the positrons.The red line is a cosine fit to the distribution.
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4 This work is done in collaboration with
scientists from the Chemistry and Physics
Divisions at Los Alamos. See Crane et al.
2001.
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loss rate of the atoms from the trap,
which could affect the rubidium-84
trapping lifetime—see Figure 7(b).
Fortunately, this loss rate was found to
be sufficiently small and did not pres-
ent a problem for the sympathetic 
cooling experiment. We are currently
optimizing the evaporative-cooling
process to achieve quantum degeneracy
for the bosonic rubidium-87 and to
study its cooling of rubidium-84
(Crane et al. 2000).

Ultrasensitive Detection. As a result
of fallout from atmospheric nuclear
tests, the two radioactive isotopes
cesium-135 (t1/2 = 2.3 × 106 years)
and cesium-137 (t1/2 = 30 years) are
ubiquitous in the environment, at a rela-
tive abundance of roughly 1 part per
billion with respect to stable cesium-
133. (The fission product isotopes are
man-made, that is, anthropogenic.)
Cesium adsorbs strongly and rapidly to
soil particles, and because the heavier

isotope cesium-137 is relatively easy
to detect through gamma-ray 
spectrometry, it has served as a
chronometer and tracer in a diverse
array of scientific endeavors, includ-
ing studies of soil erosion and lake
sedimentation. 

The long radioactive lifetime of
cesium-135, however, severely limits
its detection by gamma-ray spectrome-
try. This is unfortunate, since a meas-
urement of the cesium-137/cesium-135
isotope ratio would lead to a relatively
unambiguous determination of a sam-
ple’s age. Furthermore, that particular
ratio is of interest for nonproliferation
and treaty verification because the
cesium-137/cesium-135 content of
nuclear-fuel effluent can provide valu-
able information about nuclear-reactor
operations. 

Detecting both isotopes, especially
from random environmental samples,
requires that we have a highly sensi-
tive, highly selective technique.
Several advanced technologies,
including resonant ionization mass
spectrometry (RIMS), have been suc-
cessfully applied to the problem, with
the RIMS method achieving a detec-
tion limit of about 1 × 108 atoms, an
estimated isotopic selectivity of about
1010, and an overall efficiency (from
source size to detectable sample size)
of 2 × 10–6. 

We recognized that, when coupled
to a mass separator, a MOT could do
even better. Because the trapping
potential of a MOT derives from a
multiphoton, near-resonant absorption
process, it is very species selective
(atomic, isotopic, and isomeric) with
respect to what it traps. The mass sep-
arator also has high isotopic selectiv-
ity, so a mass separator/MOT system
affords a huge suppression of signals
from unwanted species. A MOT
“detector” should also have high sen-
sitivity. Each trapped atom can scatter
(rapidly absorb and emit) about 107

photons per second, so even small
numbers of atoms can be detected. 
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Figure 7. Lifetimes in a MOT: Rubidium-84 with and without an
Overlapping Cloud of Rubidium-87
How long will a MOT confine half a million rubidium-84 atoms? The data indicates
that the answer depends on the atomic density. (a) At high densities (short times),
light-assisted collisions between trapped atoms dominate. These give rise to the
short-lived component (t1 = 12.8 s) of the overall trap lifetime. (The inset shows a fit
to the short-lived component.) As the number of trapped atoms decreases and the
density goes down, light-assisted losses become negligible and only collisional
losses between the cold atoms and the hot background gas remain. The collisional
losses correspond to the long-lived component, with a lifetime of about 59 seconds.
(b) Introducing rubidium-87 atoms into the trap could lead to collisions between the
rubidium isotopes and an enhanced loss rate. This figure shows the normalized life-
time in the trap of rubidium-84 atoms with and without an overlapping cloud of
rubidium-87 atoms (solid line and dashed line, respectively). The additional loss rate
is sufficiently small that it does not present a problem for the sympathetic cooling
experiment discussed in the text.



We are the first group to have suc-
ceeded in trapping and detecting
cesium-135 and cesium-137 in a
MOT. A sample containing both 
isotopes was placed in the source of a
mass separator, and each isotope was
sequentially measured with a MOT.
Trapped-atom numbers in the case of
either isotope ranged from 104 to 107,
as determined from the MOT fluores-
cence signal. Over this trapped-atom
range, the MOT fluorescence signal
was found to increase linearly with
the number of atoms implanted into
the foil with no sign of an isotopic
dependence to within 4 percent. 

Direct measurement of the cesium
fluorescence signals should yield the
cesium-137/cesium-135 ratio. In prin-
ciple, our mass separator/MOT tech-
nique can make that determination to
within 10 percent of uncertainty.
Currently, the system has a detection
limit of about 106 atoms, an isotopic
selectivity of greater than 1012, and an
overall efficiency of 0.5 percent. As
such, our work represents a significant
advance in efficiency and isotopic
selectivity among other methods
applied to the detection of cesium
radioisotopes (Di Rosa et al. 2002.).
More important, our results demon-
strate the advantages of applying
atom-trapping techniques to the gen-
eral problem of ultrasensitive detection.

Conclusions

Over the last decade, advances in
the laser cooling and trapping of atoms
have revolutionized the prospects of
fundamental research and applied
quantum-based projects. In atomic
physics, scientists have gained
unprecedented control over quantum
ensembles, as witnessed by the cre-
ation and wide study of BECs today.
But the new trapping and cooling tech-
niques should not be viewed as simply
a workhorse for quantum optics and
atomic physics. Their use has spread to

nuclear physics (as in our rubidium-82
experiment), biophysics, condensed-
matter physics, quantum information,
and environmental science (as demon-
strated by our cesium experiments).
The results of this “cross-fertilization”
have in turn enriched the field of
atomic physics. We believe the atom-
trapping revolution is just beginning
and that in the years to come there will
be many new exciting interdisciplinary
opportunities. �
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Something wonderful happens
when small numbers of ions are
trapped in a linear Paul (radio-

frequency, or rf) trap and laser-cooled.
The ions become nearly motionless
and line up neatly along the trap
axis—each confined to its own tiny
space of about 100 micrometers or
less in any direction. Because the ions
are frozen in place, experimental
physicists can continually observe
them for up to months at a time and
gain uncommon insight into the 
quantum realm.

For example, single ions exhibit
quantum-mechanical effects that could
never be observed in a large ensemble
of ions or neutral atoms. A large field
of study in quantum optics has in fact
emerged with the development of ion
traps (Thompson et al. 1997). In addi-
tion, the internal transitions of a nearly
motionless ion are only slightly 
affected by Doppler shifts, and the 
ion can be superbly isolated from
unwanted electric fields and noisy
magnetic fields. This characteristic
makes a trapped ion a useful testing
ground for many physical theories that

predict very small shifts of the atomic
energy levels (Berkeland et al. 1999).
Finally, a focused laser beam can inter-
act first with one specific ion, then a
different one—a capability that means
we can control complicated interactions
between states of a particular ion and
between different ions. For this reason,
the ion trap has shown considerable
promise as the basis for a quantum
computer. (See the article “Ion-Trap
Quantum Computation” on page 264.) 

In this article, I discuss some of
our activities with trapped and laser-
cooled ions. I focus on an experiment
that provides a fundamental test of
quantum-mechanical randomness but
also mention a spectroscopy experi-
ment that is a prerequisite to the
development of a quantum logic gate.
For background material, see the pre-
viously mentioned article, “Ion-Trap
Quantum Computation,” which dis-
cusses the operational principles of a
linear Paul trap and laser cooling.

We conduct our experiments using
singly ionized strontium atoms. 
Figure 1(a) is an illustration of our 
linear Paul trap (Berkeland 2002).

Most of the trap has been created with
off-the-shelf components and requires
no precise or otherwise demanding
machining to assemble. This feature is
significant because it shows that ion
trapping with linear traps can be an
accessible technology for groups with
limited resources.

Figure 1(b) shows the transitions
we use in the strontium ion 88Sr+. We
use the 422-nanometer transition to
Doppler-cool the ions. We also collect
the 422-nanometer fluorescent light
from the decay of the P1/2 state and
focus it onto a detector to image the
ions. Light at 1092 nanometers drives
the D3/2 ↔ P1/2 transition to prevent
the atoms from pooling in the long-
lived D3/2 state, in which they would
not scatter any 422-nanometer light. 
A 674-nanometer diode laser drives
transitions between the S1/2 ground
state and the D5/2 state, which lives an
average of 0.35 seconds. This transi-
tion can be used to couple the S1/2 and
D5/2 states of the ion with its motional
states, any of which may be used as
qubits in a quantum computer. The
S1/2 ↔ D5/2 transition is also driven
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so that quantum jumps can be
observed in the experiments discussed
next. 

Quantum Randomness 

In the article “A New Face for
Cryptography” on page 68, the

authors describe the quantum cryp-
tography project at Los Alamos.
Cryptography applications, whether
classical or quantum, require strings
of numbers (typically 1s and 0s) that
are as random as possible. Generating
random numbers, however, is not a
trivial matter. In fact, the random
number generators found in various

computer programs are do not yield
very random numbers because they
are based on algebraic processes that
are intrinsically deterministic. 

It is generally accepted that pro-
ducing strings of truly random num-
bers requires measuring the random
outcome of a quantum-mechanical
process. One example of a random
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(a) A schematic of the linear trap depicts five 88Sr+ ions along
its axis (not to scale). The ions in this trap are confined radial-
ly in a time-averaged potential that is created by applying 
100 V at a frequency of 7 MHz to the two electrodes shown.
The other two electrodes are held at a constant potential.
The tubular electrodes (labeled “sleeves”) are held at constant
potentials up to 100 V, relative to the other electrodes, to stop
the ions from leaking out of the ends of the trap. The picture
of five Sr+ ions was made by focusing the 422-nm light scat-

tered from the ions onto an intensified charge-coupled-device
camera. The ions are spaced about 20 µm from each other.
(b) The diagram shows the relevant energy levels of Sr+ and
the corresponding transitions (not to scale). We use 422-nm
light from a frequency-doubled diode laser to Doppler-cool the
ions and collect the scattered 422-nm light to detect the ions.
A fiber laser generates 1092-nm light that keeps the ions from
becoming stuck in the long-lived D3/2 state. A very stable
diode laser at 674 nm drives the narrow S1/2 ↔ D5/2 transition.

About forty strontium ions lined up in our linear Paul trap are visible because they scatter laser
light. The apparent gaps are due to other ions that do not scatter the light.

Figure 1. Strontium Ion Linear rf Paul Trap



outcome is a photon hitting a beam
splitter (Jennewein et al. 2000). The
photon has a probability to either pass
through the optic or reflect off it, and
only a measurement determines its
fate. Another example is the decay of
radioactive nuclei, which emit, say,

alpha particles at unpredictable times
(Silverman et al. 2000). Although both
those processes are believed to be ran-
dom, they suffer from one major draw-
back in a test of their statistics: As in
any experimental setup, all the detec-
tors have physical limitations.

Therefore, we cannot be sure that we
would detect every photon or alpha
particle. It is possible that some non-
random processes might be overlooked
in analyzing the incomplete data set. 

In contrast, a very clean way to test
the statistical nature of quantum
processes is to analyze the behavior of
an atom undergoing quantum jumps
(Erber 1995). Quantum jumps are the
sudden transitions from one quantum
state to another. As Figure 2 shows, a
strontium ion in the S1/2 ground state
will absorb a photon from a laser tuned
to 422 nanometers and “jump” to the
P1/2 excited state. Because the P1/2
state is short-lived, the ion quickly
returns to the S1/2 state by emitting a
422-nanometer photon in a random
direction. Once it returns to the S1/2
state, the ion can absorb and emit
another photon, and because the life-
time of the P1/2 excited state is so
short, the ion will scatter millions of
photons per second. We can detect
enough of the scattered light with an
optical system to observe the ion but
not enough to determine every time the
ion jumps to and from the P1/2 state.

To directly observe quantum
jumps, we simultaneously illuminate
the ion with a 422- and a 674-
nanometer laser light. In addition to
jumping to the P1/2 state, now the ion
can also jump to the D5/2 state. As
soon as that transition occurs, the ion
will stop scattering 422-nanometer
light. The scattered light will return
the moment the ion has left the D5/2
state. As Figure 2 shows, we can 
very easily record every time a 
single ion makes a transition to the
D5/2 state and every time it returns to
the S1/2 state. According to quantum
theory, the exact times of those transi-
tions are completely unpredictable.
Surprisingly, this prediction has not
been tested with data sets comprising
much more than about a thousand 
consecutive events. It is important to
test very large sets of data because it
is harder to make a nonrandom series
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Figure 2. Quantum Jumps in a Single Trapped 88Sr+ Ion 
(a) When illuminated by 422-nm radiation, a single strontium ion will cycle between
the S1/2 and P1/2 states and will scatter millions of photons per second. Some of the
scattered light can be collected with a simple optical detector in order to monitor
the state of the ion. (b) If the ion is simultaneously illuminated with 674-nm radia-
tion, it will occasionally undergo a transition (“quantum jump”) from the S1/2 state
to the long-lived D5/2 state. The scattered light then disappears. (c) This plot shows
typical data from the quantum-jump experiment. When the count rate is over
50 counts per 10 ms, the atom is cycling between the S1/2 and P1/2 states. When the
count rate suddenly falls to less than 50 counts per 10 ms, the atom has made a
transition into the D5/2 state. We continuously monitor the ion’s scattering rate for
nearly an hour to observe tens of thousands of these transitions.
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of numbers appear random if the
series is very long.

Many tests can be used to deter-
mine the degree of randomness in a
string of data. Figure 3(a) shows the
result of one such test applied to our
quantum-jump data (Itano et al. 1990).
A single atom was continuously moni-
tored until it had made over 34,000
transitions in and out of the D5/2 state.
We record the length of each time
period Ton,i, during which the atom
continually scatters 422-nanometer
photons, and the length of each subse-
quent time period Toff,i, during which
the ion scattered no photons because it
was in the D5/2 state. For example, in
the figure, the values of Toff are
Toff,1 = 0.23 second, Toff,2 = 0.1 sec-
ond, Toff,3 = 0.61 second, and
Toff,4 = 0.17 second. 

We then sift through the data to
determine the number of times a par-
ticular pair of values (Toff,i, Toff,i+1)
occurs and make the color-coded plot
shown in Figure 3(a). The symmetry
and shapes of these graphs reflect 
several important characteristics of
the data. For example, a pair of val-
ues, say (Toff,i, Toff,i+1) = (0.23 sec-
ond, 0.1 second), is just as likely to
occur as the pair (0.1 second, 0.23
second)—a long period of fluores-
cence is no more likely to be fol-
lowed by a short one than a short
period is likely to be followed by a
long one. Essentially, plots like these
indicate that the ion has no memory
of what it was doing just the briefest
moment before it fluoresces. This
fundamental feature of quantum
processes has not previously been
tested precisely. It is also exactly
what one would like to see in a ran-
dom number generator. 

We can easily convert the quan-
tum-jump data into a string of 1s and
0s. If Ton,i is more than a set amount
of time, we assign to that event the
value 0. Likewise, if Ton,i is less than
this time, we will assign the value 1
to the event. Figure 3(b) gives an
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Figure 3. Analyzing Quantum-Jump Data
The scatter plots show consecutive periods that the ion spends (a) scattering
422-nm photons (Ton,i, Ton,i+1) and (b) not scattering 422-nm photons (Toff,i, Toff,i+1).
Because these graphs are symmetric about their diagonal axis, we can tell that the
ion is just as likely to spend a long time scattering photons followed by a short time
scattering photons as it is to spend a short time followed by a long time scattering
photons. This is one of many indications that the ion has no memory of when it has
made a transition between the S1/2 and D5/2 states. (c) The quantum-jump data can
also be converted to digital data. The first set of numbers shows a string of consecu-
tive times spent in the D5/2 state (Toff,i). If the ion spends 30 ms or more in the D5/2
state, the event is assigned a value of 0. Otherwise, the event is assigned a value of
1. These assignments are shown in set 2. With strings of tens of thousands of these
digital numbers, we can use established protocols to test the randomness of our
quantum-jump data.



example of this conversion for a 
typical set of data.

Digitizing our data lets us use
some of the established protocols
that test the randomness of digital
data. (One such standard is outlined
in the U.S. Federal Information
Processing Standards publication
140-2). An example of such a test is
the following: In a string of 1s and
0s, we count how many times the
two-digit patterns (0,0), (0,1), (1,0)
and (1,1) appear. We then compare
these numbers with the values
expected for an ideal, random
sequence. It is easy to calculate how
likely it is that the measured sets of
values differ from the expected ones,
so that we can decide whether or not
our quantum-jump data are random
according to the given protocol. We
are collecting continuous sequences
of data, tens of thousands of events
long, that can be used for these tests.

Quantum Computing

We are also beginning some of
the tasks that are prerequisites to
making a quantum logic gate with a
trapped ion. Perhaps the most critical
step is coherently driving transitions
between specific qubit states. In the
experiments we are considering, the
strontium S1/2 ground state corre-
sponds to the qubit state |�〉, whereas
the D5/2 excited state corresponds to
the |�〉 qubit state. The stable 674-
nanometer diode laser couples the
qubit states to each other and to
states of the ion’s quantized external
motion that would also be qubit
states (Monroe et al. 1995). 

The stability of the laser is one
of several parameters that can limit
the performance of a quantum com-
puter. If the laser frequency and phase
were constant, we could almost
always complete quantum logic oper-

ations perfectly. For example, starting
with the ion in the S1/2 state, we
could reliably create a specific super-
position of the S1/2 and D5/2 states:

(1)

However, if the phase or frequency
of the laser is not perfectly stable
while this operation is taking place,
the result of the operation may be, for
example,

(2)

In this case, the new wave function
has a small phase error. If this opera-
tion is repeated many times, the accu-
mulations of these small errors could
invalidate the results of a quantum
computation. Because every laser has
a nonzero linewidth (proportional to
the laser’s frequency), such errors are
inevitable. One way to reduce the
likelihood of introducing the errors is
to perform the logic operation quickly,
that is, faster than the typical time
scales of the frequency fluctuations 
of the laser, although it is easier to
perform a quantum-gate operation
slowly. Thus, it is critical that the
laser be very stable with its linewidth
as small as possible. 

We have measured our laser
linewidth using a procedure related 
to the quantum-jump experiment
described earlier. First, we turn off
the 422-nanometer light, letting 
the ion decay to the S1/2 state. Then
we illuminate the ion with a pulse 
of 674-nanometer laser light. (The
422-nanometer light remains off dur-
ing this step, because that light will
perturb the S1/2 state and broaden the
S1/2 ↔ D5/2 transition.) We then
determine whether or not the laser
has driven the atom from the S1/2
to the D5/2 state by shining the 
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Figure 4. Measurement of the Laser Linewidth 
The plot shows data taken from the narrow sideband of the S1/2 ↔ D5/2 transition in
a single trapped 88Sr+ ion. The solid line is a Lorentzian line shape that is fitted to
the data. In one laser probe cycle, the atom starts in the S1/2 state. Next, the cooling
light is turned off while the 674-nm light is pulsed on for 0.001s. Then the cooling
light is turned on again, and we see if any 422-nm light is scattered into the detec-
tor. If not, then the 674-nm laser has successfully transferred the ion to the D5/2
state. This process is repeated 100 times for each laser frequency.



422-nanometer light on the ion. 
We detect light scattered by the ion if
it is not in the D5/2 state, but only
background light (the small amount
of light scattered off the trap and 
vacuum chamber) if the ion is in the 
D5/2 state. Figure 4 shows the number
of times the 674-nanometer laser
transfers the ion to the D5/2 state as
the laser frequency is scanned over
one of the motional sidebands of the 
S1/2 ↔ D5/2 transition. The figure 
also shows the result of fitting a
Lorentzian-shaped curve to these
data. From the shape of the fitted 
curve and from a few key experimental
parameters, we can determine that the
laser linewidth is about 4 kilohertz or
less, which is about one percent of
one billionth of the absolute frequen-
cy of the laser light (445 terahertz).

This laser linewidth is sufficiently
narrow so that we can perform 
specific, coherent operations on qubit
states. However, to perform the oper-
ations needed for a quantum logic
gate, the ions must be cooled much
more than they are at present, so that
the quantum state of the ion can be
initialized to the ground state of its
motion. We are currently working
toward this goal and on further 
narrowing the linewidth of the 
674-nanometer laser. In addition,
we are working on or anticipate per-
forming several other quantum-optics
experiments. The apparatus presented
here, along with ion traps in general,
can facilitate significant contributions
to the field of quantum information
and quantum computation. �
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No fundamental principle precludes the measurement of a single spin, and there-
fore the capability to make such a measurement simply depends on our ability
to develop a detection method of sufficient spatial and temporal resolution. 

The standard electron spin detection technique—electron spin resonance—is limited to
a macroscopic number of electron spins (1010 or more) (Farle 1998). A state-of-the-art
magnetic resonance force microscope has recently detected about a hundred fully
polarized electron spins (Bruland et al. 1998). We argue that scanning tunneling
microscopy offers a powerful technique to detect a single spin and propose the theoreti-
cal basis for the new spin-detection technique, which we call spin precession by 
scanning tunneling microscopy.

The capability to routinely detect and manipulate a single spin would be remarkably
useful, with applications ranging from the study of strongly correlated systems to 
nanotechnology and quantum information processing. For example, we could investigate
magnetism on the nanoscale in a strongly correlated system by detecting changes in the
spin behavior as the system enters the magnetically ordered state (Heinze et al. 2000).
We could also fully explore the magnetic properties of a single paramagnetic atom in the
Kondo regime (Manoharan et al. 2000). Magnetic properties of spin centers in supercon-
ductors are another area where a single spin plays an important role, since it can gener-
ate intragap impurity states (Salkola et al. 1997, Yazdani et al. 1997). With regard to
nanotechnology, the ability to manipulate a single spin could open the door to single-
spin-based information storage devices, whereas in the realm of quantum computing,
it could help bring to fruition several specific computing architectures (Kane 1998,
Loss and DiVincenzo 1998). 

Our theoretical investigation of spin precession–scanning tunneling microscopy has
in part been motivated by the experiments of Yshay Manassen et al. (1989), in which a
defect structure (an oxygen vacancy) in oxidized silicon was interrogated with a scan-
ning tunneling microscope (STM). The STM operated in the presence of an external
magnetic field, and a small alternating current (ac) signal in the power spectrum of the
tunneling current was detected at the spin’s precession, or Larmor, frequency. The ac
signal was spatially localized at distances of about 5–10 angstroms from the spin site.
The extreme localization of the signal and the linear scaling of its frequency with the
magnetic field prompted Manassen to attribute the detected ac signal to the Larmor pre-
cession of a single-spin site. Whereas that interpretation was somewhat controversial,
the later work by Manassen et al. (2000) and more recent work by Colm Durkan and
Mark Welland (2002) support the notion that STM can indeed sense a single spin. 

From a theoretical perspective, it was not clear how the spin could generate an 
ac component in the STM’s tunneling current. As outlined below, however, the precess-
ing spin causes an ac modulation of the surface density of states near the spin site,
provided a dc current flows through the surface. In fact, that current can be the tunneling
current that flows between the STM tip and the surface. Thus, the tunneling current,
which is proportional to the surface density of states, plays two roles in spin detection
by scanning tunneling microscopy: It provides a means to couple the precessing spin to
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the density of states and a means to detect the ac modulation of those states. The experi-
mental setup that we consider is shown in Figure 1. A general discussion of the princi-
ples underlying scanning tunneling microscopy can be found on page 303. 

Before analyzing the effect of the STM, consider a localized magnetic site with spin
S (spin 1/2), on the surface of a substrate. In the presence of a magnetic field, B, the
energy levels of the spin-up and spin-down states (denoted by E↑ and E↓, respectively)
are Zeeman-split. At a finite temperature, or as a result of an external excitation, the spin
may be driven into the mixed state characterized by the wave function 

|ψ(t)〉 = α(t) |↑〉 + β(t) |↓〉  , (1)

where 

α(t) = |α | exp(–iE↑t)  , and
β(t) = |β | exp(–iE↓t + iφ (t))  .

The phase φ (t) determines the spin coherence time τφ and is related to the spin relax-
ation time T2 measured by electron spin resonance.

In the state given by Equation (1), the spin, with an expectation value of 

(2)

will precess around a magnetic field line at the Larmor frequency ωL,

hωL = E↑ – E↓ = γB (3)

where γ is the gyromagnetic ratio. (See the box “Spin Manipulation with Magnetic
Resonance” on page 288.) In a magnetic field of 100 gauss, this frequency  is 280 mega-
hertz for a free electron. 

If we consider what happens on the surface, then the precession of the local moment
will be coupled to the orbital motion of electrons via the spin-orbit interaction. The
details of the spin-orbit coupling depend on the specific material. In general, however,
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S(t)

V0

Tip

Single 
spin

Tunneling 
current

B

I0 + δI(t) Figure 1. Experimental
Setup for Electron Spin
Precession by Scanning
Tunneling Microscopy
In the applied magnetic field B,
the spin of the magnetic atom
(for example, gadolinium,
shown in gold) is precessing
around the field line. The STM
tip is precisely positioned 
within a few angstroms of the
spin site. The dc tunneling 
current I0, between the STM tip
and the sample, can acquire 
an ac component, δI (t), that 
signals the presence of the 
precessing spin.



the interaction of the conduction electrons with the local impurity spin can be described 
by the Hamiltonian

H = H0 + J S•σ (0)  , (4)

where J is the strength of the exchange interaction between the local spin S, and the spin
density of the conduction electrons, σ(0) = σαβ cα

† (0) cβ(0), on the impurity site. Here,
cα

†(0), cβ(0) are the electron creation/destruction operators with spin α and β, respective-
ly, and σαβ = (σ x

αβ , σ y
αβ , σ z

αβ) is a vector of Pauli matrices. The unperturbed
Hamiltonian H0 describes the surface without the spin impurity. Based on symmetry, the
energy of the unperturbed surface states contains a spin-orbit part that is linear both in
the conduction-electrons’ spin, σ, and their momentum, k (Bychkov and Rashba 1984).

(5) 

where m* is the band mass of electrons in the substrate, n is a unit vector normal to the
surface, and γSO is a parameter that characterizes the strength of the surface spin-orbit
coupling. The problem specified by Equations (4) and (5) can be solved for each instan-
taneous value of the precessing spin S(t). The solution, however, does not lead to a 
time-dependent conduction-electron density of states N(r, t) because the effects of 
the precessing spin average to zero. In that case, the tunneling current would remain
constant. 

To extend the model, we account for the fact that the tunneling current injects elec-
trons into the sample, and those electrons can flow to the spin site. In the presence of a
current density j flowing through the surface, the equilibrium momentum distribution k
is shifted by an amount, k0 = jm∗/ne, where n is the carrier density and e is the electron
charge. This shift can be introduced into a Green’s function matrix for the conduction
electrons, Ĝ0(k,ω),

(6)

We expand the matrix in γSO relative to the Fermi energy. Then, to first order in both the
exchange coupling J and γSO, we obtain an S-dependent contribution to the density of
the surface states:

(7)

This correction depends on the distance from the spin center, r, through the Bessel func-
tion of the first kind, J0(x). The correction is time dependent in the presence of a mag-
netic field because the projection of S oscillates at the Larmor frequency. The magnitude
of the correction is proportional to the current density in the system (through k0). 

The total (ac plus dc) tunneling current I, between the STM tip and the sample is pro-
portional to the single-electron density of states in the substrate. Therefore, the 
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ac component δI(t), normalized to the tunneling current, can be estimated as

(8)

We have focused on the case in which an STM injects current into the system, but in
principle, the current can also be provided externally (through extra leads attached to the
substrate), and the ac current can be detected with some ultrasensitive current measure-
ment device. 

It is also important to note that the electron density of states N(r, t) is a scalar and
should be invariant under time reversal, whereas S is odd under time reversal. Hence,
δN(r, t) can depend only on the product of the spin vector with some other vector that is
odd under time reversal. In Equation (7), that vector is the current density, that is,
δN ~ [k0 × S]n. Another possibility is that the correction to the density of states depends
on the time derivative of the spin vector, that is, δN ∼ ∂tS(t). We have also found a
mechanism for this possibility. 

Our conjecture of how an STM can detect single spins is based on the ac modulation
of the density of surface states that results from a current-induced spin-orbit coupling to
the precessing local spin. The changing state density is observed as the ac component to
the tunneling current. �
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